Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Müssen wir mit quietschenden Bremsen leben?

30.03.2016

Prof. Volker Mehrmann vom Forschungszentrum MATHEON sucht nach neuen mathematischen Modellen zur Lösung diese Lärmproblems

Ob beim Auto oder bei der Bahn: Quietschende Bremsen sind lästig, lassen sich aber bisher nicht vermeiden. „Daraus allerdings auf einen Mangel der Bremsanlage und deren Funktionstüchtigkeit zu schließen ist unbegründet“, sagt Prof. Volker Mehrmann, Mathematiker an der TU Berlin und Sprecher des Forschungszentrums MATHEON.


Modelle von Bremsen

Mehrmann

Er hat mit seiner Arbeitsgruppe die Entwicklung von neuen Methoden zur Simulation der quietschenden Bremsen im Rahmen eines Forschungsprojektes untersucht und neue Algorithmen entwickelt und implementiert, die das Phänomen zwar nicht beseitigt, aber das Entstehen transparenter macht und damit dem Bremsenhersteller verbesserte Möglichkeiten zur Optimierung an die Hand gibt.

„Das Quietschen entsteht durch Schwingungen, die durch Reibung an der Bremse auftreten und die sich in störenden Geräuschen bemerkbar machen“, sagt der Mathematiker. Er vergleicht das mit einer Gruppe, die im Gleichschritt über eine Brücke marschiert und diese damit zum Schwingen bringt. In diesem Fall allerdings sind die Schwingungen für das Auge erkennbar, die Schwingungen beim Bremsen dagegen erzeugen das unangenehme Quietschen und belästigen das Ohr.

Die Ursachen für dieses Geräusch sind seit Jahren bekannt. Es ist auch klar, dass die Schwingungen aufgrund von Schmutz, dem Alter der Bremse und der Oberflächenbeschaffenheit des Materials zu unterschiedlichen Zeiten auftreten. Nicht beantwortet dagegen ist die Frage, wie man das Quietschen beseitigen kann.

„Wir haben gemeinsam mit Professor Utz von Wagner vom Institut für Mechanik der TU Berlin Versuche an handelsüblichen Bremsen gemacht und festgestellt, dass manchmal schon eine kurze Berührung der Bremse mit einem Schraubenzieher das Quietschen erzeugt oder im wahrsten Sinne des Wortes „schlagartig“ auch wieder beendet“, so der TU-Professor.

Professor Wagner war der eigentliche Initiator des Projektes. Er sollte auf Anregung des Wirtschaftsministeriums ein Konsortium bilden, um dieses Lärmproblem zu lösen. Seitens der Anwender waren zwei namhafte Autohersteller, eine Softwarefirma für Modellierungssoftware und mehrere mittlere und kleinere Hersteller von Bremsen oder Bremsenteile Mitglieder in diesem Konsortium.

Doch von Beginn an war klar, dass hier eine Problemlösung nicht ohne die Mathematik zu bewerkstelligen war. So kamen Volker Mehrmann und seine Arbeitsgruppe im MATHEON ins Spiel. „Die bisherigen Methoden um zu berechnen, wann es quietscht, waren nicht wirklich ausgereift“, so der Mathematiker.

In der Praxis läuft das so ab, dass in der Designphase bei der Herstellung einer Bremse das Design immer wieder verändert wird, um im Test das Quietschen zu beseitigen oder zumindest in den nicht hörbaren Bereich zu verdrängen. Dabei wird mit unterschiedlichen Materialien, einer Veränderung der Form der Bremsscheibe sowie einer Reihe anderer Parameter experimentiert. „Da kann man im Labor schon ziemlich gute Ergebnisse erzielen. Das Problem ist aber, dass sich die Form und Beschaffenheit der Bremsscheibe in der Realität ständig verändern.

Abrieb, Schmutz, Witterung und vieles mehr spielt dabei eine Rolle. Deshalb quietschen neue Bremsen normalerweise nicht“, schildert Volker Mehrmann das Problem. Die idealen Bedingungen im Labor entsprechen also meist nicht den realen Verhältnissen. Deshalb war es eine zentrale Fragestellung des Projektes, ob man schon in der Designphase etwaige Veränderungen in die Betrachtung einbeziehen kann.

Hier kommt die Mathematik ins Spiel! „Will man in dieser Entwicklungsphase schon solche Parameter beachten, muss man ein mathematisches Modell entwickeln. Ununterbrochene Experimente wären hier viel zu langwierig. Aber auch mathematisch ist dieses hochgradig nichtlineare Problem nicht mit Standardlösungen in den Griff zu bekommen“, so Prof. Mehrmann. Schon bisher existieren für den industriellen Test solche mathematischen Lösungen. Doch bedient man sich sowohl in der Autoindustrie wie auch in den Softwarefirmen sehr vereinfachter Modelle. Man lässt bei der Berechnung von reduzierten Modellen. die in der Optimierung eingesetzt werden beispielsweise die Reibung und die Dämpfung einfach außen vor. „Dafür, dass man viele Eigenschaften weglässt, funktioniert dieses Modell erstaunlich gut, aber halt nicht gut genug“, weiß Volker Mehrmann.

Die Mathematiker um Volker Mehrmann haben daher zunächst einen neuen Löser entwickelt, um die Eigenschwingungen der Bremsen zu berechnen. Damit können nun auch bei einem kleinen Modell viel mehr Parameter ausprobiert werden. Beim Test dieses Modells im Realversuch wurde dann jedoch festgestellt, dass das mathematische Modell „ sehr störungsempfindlich“ war.

„Die Ergebnisse waren so schlecht, dass wir skeptisch wurden. Schließlich haben wir – fast zufällig – entdeckt, dass bei starren Verbindungen in der Mechanik gewöhnlich ein Trick angewendet wird, bei dem man für die Modellierung in diese an sich starre Verbindung eine sehr steife Feder einbaut. „Damit haben wir es nicht mehr mit einer starren Verbindung zu tun, die in der Mathematik unproblematisch wäre. Diese „künstlichen“ Federn jedoch haben unsere gesamten Berechnungen nicht nur beeinflusst, sondern oft sogar zerstört. Unsere numerische Simulation konnte also überhaupt nicht zu einem brauchbaren Ergebnis führen, zumal die Auswirkungen diese Tricks von Hersteller zu Hersteller verschieden sind“, sagt der Mathematiker.

Also mussten die Mathematiker die Berechnungsmethoden so modifizieren, dass am Modell erkennbar wurde, ob und mit welchen Auswirkungen diese eigentlich nicht vorhandene Feder eingesetzt worden war. „Im Sinne der vereinfachten Modellierung haben wir das Modell damit also verschlechtert, im Sinne der numerischen Verfahren jedoch erheblich verbessert. Denn wir können jetzt erkennen, ob diese virtuellen Feder eingebaut wurden und ersetzen sie in unserem Modell wieder durch die realistische starre Verbindung. Damit wird das System wesentlich weniger sensitiv und wir konnten nachweisen, dass die klassische in der Industrie verwendete Methode teilweise zu vollkommen falschen Ergebnissen führt“, schildert der Professor das weitere Vorgehen.

Auf diese Weise ist eine neue Software entstanden, die diese Sensitivitätschecks beinhaltet. Allerdings ist damit noch immer nicht das wirkliche Problem der Bremsenhersteller gelöst. Wenn man davon ausgeht, dass das „neue“ Modell wirklich stimmt, bekommt man zwar brauchbare Ergebnisse, aber noch ist nicht bewiesen, dass das Modell wirklich gut ist. Noch besteht also die Gefahr, dennoch schlechte Ergebnisse zu bekommen.

„Dies ist für uns Mathematiker der Grund, weshalb wir trotz dieser erheblichen Verbesserung glauben, dass man die gesamte Herangehensweise verändern und versuchen muss, es mit einer nicht-linearen Modellierung zu lösen“, glaubt Volker Mehrmann. Allerdings bezweifelt er, dass dies zur Zeit von den Herstellern umsetzbar ist. Ein solch komplexes mathematisches Problem kann wahrscheinlich nur in einem Forschungsinstitut wie dem MATHEON zufriedenstellend gelöst werden.

Volker Mehrmann und Utz von Wagner haben daher bereits einen Antrag bei der Deutschen Forschungsgemeinschaft gestellt, um eine grundlegend neue Modellierung und Analyse zu machen.
Ein weiterer ganz entscheidender neuer Schritt ist im Rahmen von Untersuchungen im MATHEON ebenfalls gelungen.

Betrachtet man die Bremse als sogenanntes port-hamiltonisches Modell, kann man die Modellreduktion vereinfachen und die Untersuchung der Phänomene, die das Quietschen erzeugen vom Rechenaufwand her deutlich reduzieren. Die port-hamiltonische Formulierung hält die mathematische Beschreibung sehr viel näher an der realen Physik des Problems und erlaubt eine sehr viel einfachere Stabilitätsanalyse. Die theoretischen Grundlagen dafür wurden in einer gerade fertig gestellten Forschungsarbeit herausgearbeitet und sollen jetzt in numerische Methoden und Software umgesetzt werden.

Das aktuelle Ergebnis des gerade abgeschlossenen Projekts ist demnach, dass die Softwarefirmen und Autohersteller nun eine erheblich bessere Software bekommen haben, mit der sie ihre Modelle rechnen können. Sie haben auch eine Methode bekommen, mit der sie schnell feststellen können, wann ihre Rechnungen unbrauchbar sind und sie haben jetzt eine Modellreduktionsmethode, um ein kleines Modell zu erzeugen und damit die generelle Möglichkeit, ihre Software erheblich zu verbessern.

Die Mathematiker haben damit den Herstellern von Bremsen und den Autobauern bessere Tools an die Hand geliefert, mit denen sie das Bremsendesign verbessern können. Ein großer Erfolg für die Arbeitsgruppe von Volker Mehrmann am MATHEON ist es zudem, dass erkannt wurde, dass in der Fragestellung der Lärmreduzierung generell an den Methoden der angewendeten quadratischen Eigenwertprobleme etwas verändert werden muss.

Mit einer bereits in einem früheren MATHEON-Projekt zur Frage der Schwingungen und der Lärmerzeugung bei Bahnschienen neu entwickelten Theorie ist eine hochzitierte mathematische Arbeit entstanden, die auch bei der Lösung der quietschenden Bremsen große Erfolge verspricht.

„Im Endeffekt bin ich der festen Überzeugung, dass bisher alles noch lange nicht ausreicht, sondern man mit den mathematischen Methoden noch einen Schritt weiter gehen muss. Erst dann kann man das Quietschen in den nicht mehr hörbaren Bereich gedrängt werden. Ganz beseitigen wird man es sicherlich nie können, es sei denn mit einer hoch entwickelten und daher sehr teuren Sensorbasiertenlösung“, zieht Prof. Volker Mehrmann ein aktuelles Resümee.

Weitere Informationen:

http://www.matheon.de
http://www.math.tu-berlin.de/fachgebiete_ag_modnumdiff/fg_numerische_mathematik/...

Rudolf Kellermann | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Bremse Bremsen Designphase MATHEON Modellierung Quietschen Reibung Schwingungen Simulation Software

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie