Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Quantensensoren aus Diamant winzige Magnetfelder identifizieren

22.06.2016

Forscher am Fraunhofer Institut für Angewandte Festkörperphysik IAF entwickeln hochempfindliche Diamantsonden als Basis für neuartige Quantensensoren. Diese sind in der Lage, kleinste magnetische Felder im Nanometer-Bereich zu identifizieren. In Zukunft sollen die Sonden zur Qualitätskontrolle von magnetischen Speichermedien eingesetzt werden, um fehlerhafte Festplattenbereiche zu identifizieren und so die Ausschussraten und Produktionskosten wesentlich zu reduzieren. Weitere Einsatzfelder liegen in der Charakterisierung biologischer Substanzen wie beispielsweise Proteine.

Die Quantenmechanik ist nicht nur ein spannendes Feld der Grundlagenforschung. Fortschritte in der Quantentechnologie versprechen eine Vielzahl industrierelevanter Innovationen, die in den kommenden fünf bis zehn Jahren Einzug in die Wirtschaft halten werden.


Rasterelektronenmikroskop-Aufnahme einer Diamantspitze.

© Fraunhofer IAF


Die Diamantsonden werden künftig zur Qualitätskontrolle von magnetischen Speichermedien eingesetzt, um die Produktionskosten und Ausschussraten wesentlich zu reduzieren.

© Foto Harald Biebel - Fotolia

Forscher am Fraunhofer Institut für Angewandte Festkörperphysik IAF, an der Universität Stuttgart und am Max-Planck-Institut für Festkörperforschung entwickeln gemeinsam hochempfindliche Diamantsonden als Basis für neuartige Quantensensoren. Diese sind in der Lage, kleinste magnetische Felder mit nanometergenauer Ortsauflösung zu charakterisieren.

In Zukunft sollen die Sonden zur Analyse und Kontrolle von magnetischen Speichermedien eingesetzt werden, um fehlerhafte Festplattenbereiche zu identifizieren und so die Ausschussraten und Produktionskosten wesentlich zu reduzieren. Weitere Einsatzfelder liegen in der Charakterisierung biologischer Substanzen wie beispielsweise Proteine. Das 2016 gestartete Forschungsprogramm mit dem Namen »NMR (Nuclear Magnetic Resonance oder Kernspinresonanz) at the Nanoscale« hat eine Laufzeit von drei Jahren.

Unmittelbares Ziel der Kooperation zwischen Prof. Jörg Wrachtrup (Universität Stuttgart), Prof. Klaus Kern (Max-Planck-Institut) und Christoph Nebel (Fraunhofer IAF) ist die Herstellung von Magnetfeld-Sonden aus Diamantspitzen. Die Detektion von Magnetfeldern erfolgt über ein sogenanntes Stickstoff-Vakanz-Zentrum (NV), das sich etwa 10 Nanometer unter der Oberfläche der Diamantspitze befindet.

Die Spitzen (siehe Bild anbei) sind vergleichbar mit den Sonden eines Rasterkraftmikroskops und können mit hoher Präzision über magnetische Elemente anorganischer oder biologischer Art bewegt werden. Wirtschaftlich bedeutende Anwendungen sind Mess- und Kalibriersonden zur Qualitätskontrolle magnetischer Speicherplatten und Leseköpfe, deren Dimensionen in naher Zukunft bei ca. 20 Nanometern liegen werden.

Darüber hinaus ist geplant, die Magnetfeld-empfindlichen NV-Zentren in Diamant-Plättchen anzuordnen, um die Verteilung von magnetischen Momenten zu visualisieren. Dieses Verfahren ähnelt der klassischen optischen Mikroskopie, wobei das Bild die Verteilung von lokalen Magnetfeldern zeigen soll.

Festplattenkontrolle mit Magnetfeldsensoren aus Diamant

Der Markt für Speichermedien befindet sich seit Jahren im Boom. Grund dafür ist die fortschreitende Digitalisierung in allen Lebensbereichen: Sie lässt das weltweit generierte Datenvolumen rasant ansteigen. Waren es im Jahr 2015 noch 8 Zettabytes, soll der Wert bis zum Jahr 2020 laut der IDC-Studie »Digital Universe« auf über 40 Zettabytes ansteigen – dies entspricht einer Verdopplung alle zwei Jahre. Wie unvorstellbar groß diese Zahl ist, visualisieren die Experten der Studie mit folgendem Vergleich: Würde man jeweils ein Sandkorn pro Bit zum Speichern benutzen, so entsprächen 40 Zettabytes 57-mal der Menge an Sandkörnern aller Strände der Erde.

Mit steigendem Datenvolumen nimmt auch der Bedarf an kompakten magnetischen Speichermedien zu. Die Industrie produziert immer dichter beschriebene Festplatten. Aber mit der Datendichte steigt auch die Fehlerquote exponentiell an. Verdoppelt man die Datendichte, verzehnfacht sich die Fehlerrate in der Produktion und der Ausschuss steigt. Oft sind nur einzelne Sektoren der Festplatte fehlerhaft.

Mit den neuen Quantensensoren haben die Forscher des Fraunhofer IAF, der Universität Stuttgart und des Max Planck-Instituts eine mögliche Lösung gefunden, die einzelnen Datensegmente auf der Festplatte zu prüfen. Anhand der Diamantsensoren erkennen sie, ob ein Magnetfeld anliegt oder nicht. Fehlerhafte Segmente können damit geortet und vom Schreib- und Lesevorgang ausgeschlossen werden. Millionen von Festplatten oder Schreibköpfen können so geprüft, Ausschussraten reduziert und dadurch Kosten gesenkt werden.

Kernspinresonanz-Spektroskopie (NMR) mit Diamantsensoren

Die Identifikation kleinster Magnetfelder mit Diamantsensoren funktioniert wie folgt: In der winzigen Diamantspitze werden zwei benachbarte Kohlenstoffatome entfernt und eine der entstandenen Vakanzen durch ein Stickstoffatom ersetzt. Über die Elektronen des entstehenden Stickstoff-Vakanz-Zentrums können mit der Kernspinresonanz-Spektroskopie (NMR) selbst kleinste magnetische Felder mit einer Auflösung von wenigen Nanometern detektiert werden.

So können einzelne, nicht magnetische und damit fehlerhafte Datensegmente auf dem Speicherträger identifiziert und vom Schreib- und Lesevorgang ausgeschlossen werden. Das Ergebnis: Die Festplatte kann defektfrei verkauft werden. Kunden und Produzenten profitieren gleichermaßen vom abnehmenden Ausschuss und den sinkenden Produktionskosten.

In Zukunft könnten die Diamantsensoren in einer Vielzahl von unterschiedlichen Anwendungen zum Einsatz kommen, zum Beispiel in der Biomedizin für den Nachweis von Krankheiten und Giftstoffen oder in der Materialwissenschaft für die Zuverlässigkeits- und Sicherheitsprüfung.

Weitere Informationen:

http://www.iaf.fraunhofer.de/de/presse/pressemitteilungen/magnetfeldsensoren.htm... (weitere Informationen & Bildmaterial)
http://www.iaf.fraunhofer.de/de/mediathek/videos/diamantspitzen-fuer-die-qualita... (Film: Diamantspitzen für die Qualitätskontrolle von Festplatten)
http://www.iaf.fraunhofer.de/de/mediathek/videos/mit-diamantsensoren-winzige-mag... (Film: Mit Diamantsensoren winzige Magnetfelder identifizieren)

Michael Teiwes | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise