Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Quantensensoren aus Diamant winzige Magnetfelder identifizieren

22.06.2016

Forscher am Fraunhofer Institut für Angewandte Festkörperphysik IAF entwickeln hochempfindliche Diamantsonden als Basis für neuartige Quantensensoren. Diese sind in der Lage, kleinste magnetische Felder im Nanometer-Bereich zu identifizieren. In Zukunft sollen die Sonden zur Qualitätskontrolle von magnetischen Speichermedien eingesetzt werden, um fehlerhafte Festplattenbereiche zu identifizieren und so die Ausschussraten und Produktionskosten wesentlich zu reduzieren. Weitere Einsatzfelder liegen in der Charakterisierung biologischer Substanzen wie beispielsweise Proteine.

Die Quantenmechanik ist nicht nur ein spannendes Feld der Grundlagenforschung. Fortschritte in der Quantentechnologie versprechen eine Vielzahl industrierelevanter Innovationen, die in den kommenden fünf bis zehn Jahren Einzug in die Wirtschaft halten werden.


Rasterelektronenmikroskop-Aufnahme einer Diamantspitze.

© Fraunhofer IAF


Die Diamantsonden werden künftig zur Qualitätskontrolle von magnetischen Speichermedien eingesetzt, um die Produktionskosten und Ausschussraten wesentlich zu reduzieren.

© Foto Harald Biebel - Fotolia

Forscher am Fraunhofer Institut für Angewandte Festkörperphysik IAF, an der Universität Stuttgart und am Max-Planck-Institut für Festkörperforschung entwickeln gemeinsam hochempfindliche Diamantsonden als Basis für neuartige Quantensensoren. Diese sind in der Lage, kleinste magnetische Felder mit nanometergenauer Ortsauflösung zu charakterisieren.

In Zukunft sollen die Sonden zur Analyse und Kontrolle von magnetischen Speichermedien eingesetzt werden, um fehlerhafte Festplattenbereiche zu identifizieren und so die Ausschussraten und Produktionskosten wesentlich zu reduzieren. Weitere Einsatzfelder liegen in der Charakterisierung biologischer Substanzen wie beispielsweise Proteine. Das 2016 gestartete Forschungsprogramm mit dem Namen »NMR (Nuclear Magnetic Resonance oder Kernspinresonanz) at the Nanoscale« hat eine Laufzeit von drei Jahren.

Unmittelbares Ziel der Kooperation zwischen Prof. Jörg Wrachtrup (Universität Stuttgart), Prof. Klaus Kern (Max-Planck-Institut) und Christoph Nebel (Fraunhofer IAF) ist die Herstellung von Magnetfeld-Sonden aus Diamantspitzen. Die Detektion von Magnetfeldern erfolgt über ein sogenanntes Stickstoff-Vakanz-Zentrum (NV), das sich etwa 10 Nanometer unter der Oberfläche der Diamantspitze befindet.

Die Spitzen (siehe Bild anbei) sind vergleichbar mit den Sonden eines Rasterkraftmikroskops und können mit hoher Präzision über magnetische Elemente anorganischer oder biologischer Art bewegt werden. Wirtschaftlich bedeutende Anwendungen sind Mess- und Kalibriersonden zur Qualitätskontrolle magnetischer Speicherplatten und Leseköpfe, deren Dimensionen in naher Zukunft bei ca. 20 Nanometern liegen werden.

Darüber hinaus ist geplant, die Magnetfeld-empfindlichen NV-Zentren in Diamant-Plättchen anzuordnen, um die Verteilung von magnetischen Momenten zu visualisieren. Dieses Verfahren ähnelt der klassischen optischen Mikroskopie, wobei das Bild die Verteilung von lokalen Magnetfeldern zeigen soll.

Festplattenkontrolle mit Magnetfeldsensoren aus Diamant

Der Markt für Speichermedien befindet sich seit Jahren im Boom. Grund dafür ist die fortschreitende Digitalisierung in allen Lebensbereichen: Sie lässt das weltweit generierte Datenvolumen rasant ansteigen. Waren es im Jahr 2015 noch 8 Zettabytes, soll der Wert bis zum Jahr 2020 laut der IDC-Studie »Digital Universe« auf über 40 Zettabytes ansteigen – dies entspricht einer Verdopplung alle zwei Jahre. Wie unvorstellbar groß diese Zahl ist, visualisieren die Experten der Studie mit folgendem Vergleich: Würde man jeweils ein Sandkorn pro Bit zum Speichern benutzen, so entsprächen 40 Zettabytes 57-mal der Menge an Sandkörnern aller Strände der Erde.

Mit steigendem Datenvolumen nimmt auch der Bedarf an kompakten magnetischen Speichermedien zu. Die Industrie produziert immer dichter beschriebene Festplatten. Aber mit der Datendichte steigt auch die Fehlerquote exponentiell an. Verdoppelt man die Datendichte, verzehnfacht sich die Fehlerrate in der Produktion und der Ausschuss steigt. Oft sind nur einzelne Sektoren der Festplatte fehlerhaft.

Mit den neuen Quantensensoren haben die Forscher des Fraunhofer IAF, der Universität Stuttgart und des Max Planck-Instituts eine mögliche Lösung gefunden, die einzelnen Datensegmente auf der Festplatte zu prüfen. Anhand der Diamantsensoren erkennen sie, ob ein Magnetfeld anliegt oder nicht. Fehlerhafte Segmente können damit geortet und vom Schreib- und Lesevorgang ausgeschlossen werden. Millionen von Festplatten oder Schreibköpfen können so geprüft, Ausschussraten reduziert und dadurch Kosten gesenkt werden.

Kernspinresonanz-Spektroskopie (NMR) mit Diamantsensoren

Die Identifikation kleinster Magnetfelder mit Diamantsensoren funktioniert wie folgt: In der winzigen Diamantspitze werden zwei benachbarte Kohlenstoffatome entfernt und eine der entstandenen Vakanzen durch ein Stickstoffatom ersetzt. Über die Elektronen des entstehenden Stickstoff-Vakanz-Zentrums können mit der Kernspinresonanz-Spektroskopie (NMR) selbst kleinste magnetische Felder mit einer Auflösung von wenigen Nanometern detektiert werden.

So können einzelne, nicht magnetische und damit fehlerhafte Datensegmente auf dem Speicherträger identifiziert und vom Schreib- und Lesevorgang ausgeschlossen werden. Das Ergebnis: Die Festplatte kann defektfrei verkauft werden. Kunden und Produzenten profitieren gleichermaßen vom abnehmenden Ausschuss und den sinkenden Produktionskosten.

In Zukunft könnten die Diamantsensoren in einer Vielzahl von unterschiedlichen Anwendungen zum Einsatz kommen, zum Beispiel in der Biomedizin für den Nachweis von Krankheiten und Giftstoffen oder in der Materialwissenschaft für die Zuverlässigkeits- und Sicherheitsprüfung.

Weitere Informationen:

http://www.iaf.fraunhofer.de/de/presse/pressemitteilungen/magnetfeldsensoren.htm... (weitere Informationen & Bildmaterial)
http://www.iaf.fraunhofer.de/de/mediathek/videos/diamantspitzen-fuer-die-qualita... (Film: Diamantspitzen für die Qualitätskontrolle von Festplatten)
http://www.iaf.fraunhofer.de/de/mediathek/videos/mit-diamantsensoren-winzige-mag... (Film: Mit Diamantsensoren winzige Magnetfelder identifizieren)

Michael Teiwes | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise