Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit der dritten sieht man besser

18.06.2015

Ein Mikroskop bildet in der Regel dreidimensionale Objekte in einer zweidimensionalen Projektion ab. Oft lässt sich in solchen Bildern aber nur ein Bruchteil dessen sehen, was eigentlich interessant wäre. Mit der dritten Dimension ergeben sich ganz neue Einblicke. Wissenschaftler des Paul-Drude-Instituts (PDI) nutzen eine neue Methode der Tomographie zur räumlichen Darstellung winzig kleiner Objekte.

In der Materialwissenschaft waren dreidimensionale Bilder lange Zeit nicht gefragt. Schließlich waren die optoelektronischen Bauteile in Form von planaren Schichten aufgebaut. Innerhalb der Schichten waren die Strukturen homogen, so dass zweidimensionale Schnitte für eine vollständige Darstellung ausreichten.


Nanosäulen haben auf gleicher Grundfläche eine größere Oberfläche als Schichten (Rasterelektronenmikroskopie-Aufnahmen in Aufsicht und Seitenansicht).

Abb.: PDI


Die Elektronentomographie-Bilder zeigen, dass die Nanosäulen nicht, wie geplant, einen „Hut“ aus Indiumgalliumnitrid (rot) erhalten haben, sondern dass sie damit ummantelt wurden.

Abb.: PDI

Das ist mittlerweile anders, berichtet PDI-Forscher Dr. Achim Trampert: „Bei Strukturen im Nano-Bereich reicht eine zweidimensionale Projektion nicht mehr aus, um zum Beispiel Defekte finden zu können.“ Daher etablierte er gemeinsam mit seinem Doktoranden Michael Niehle die Elektronentomographie am PDI.

In der Medizin wird die Tomographie schon längst eingesetzt: die Projektion des Objekts von allen möglichen Seiten generiert viele zweidimensionale Bilder, die der Computer anschließend zu einem dreidimensionalen Bild zusammensetzt.

Dabei liegt das „Objekt“ – also zum Beispiel der Mensch – still, und das Gerät dreht sich um ihn herum. Im Transmissionselektronenmikroskop (TEM) geht es nur umgekehrt: das Gerät ist fest, und das Objekt muss sich darin drehen, um aus verschiedenen Richtungen durchstrahlt zu werden.

Das Prinzip war schon lange klar. Es kam allerdings in der Festkörperphysik nicht zum Einsatz, weil es zwei Probleme gab: Zum einen haben die Physiker es immer mit kompaktem Ausgangsmaterial zu tun. Daraus müssen sie für das Mikroskop eine sehr dünne Nadel herauspräparieren, damit die Probe aus jeder Richtung gleich dick und damit gleich durchstrahlbar ist.

Die Nadel darf nur wenige 100 Nanometer dick sein. Dazu haben die Physiker ein Verfahren mit fokussierten Gallium-Ionen entwickelt, die die Probe wie mit einem Sandstrahler herausschneiden. Zum anderen muss der Bildkontrast der verschiedenen Materialien aus jeder Richtung gleich sein – analog den Tomographie-Bildern in der Medizin, in der zum Beispiel der Kontrast zwischen Knochen und weichem Gewebe in den Projektionen der verschiedenen Seiten immer gleich ist.

Ansonsten lässt sich daraus anschließend kein dreidimensionales Bild zusammensetzen. Da die Aufnahmen im TEM gewöhnlich einen stark richtungsabhängigen Kontrast aufweisen, wird ein sogenannter ringförmiger Dunkelfeld-Detektor in Verbindung mit der Rastermethode eingesetzt. Die so erhaltenen Projektionen spiegeln den Kontrast zwischen verschiedenen chemischen Elementen in der Probe wieder und sind nahezu unabhängig von der Orientierung.

„Wir interessieren uns vor allem für die Fehler im Material. Wie ein perfekter Kristall aussieht, wissen wir schon“, erklärt Trampert. Mit seinem Kollegen hat er Nanosäulen aus Galliumnitrid (GaN) unter die Lupe genommen. Sie könnten zukünftig als Grundlage für kostengünstige LEDs dienen. LEDs sollen Licht in ganz unterschiedlichen Wellenlängen liefern – je nachdem, ob sie ein Wohnzimmer in gemütliches Licht tauchen sollen, einen Schreibtisch erhellen oder eine Fabrikhalle ausleuchten.

Für verschiedene Wellenlängen bedarf es unterschiedlicher Halbleiter-Materialien. Wird für die Nanosäulen nicht nur GaN verwendet, sondern bekommen sie noch einen „Hut“ aus Indiumgalliumnitrid (InGaN) aufgesetzt, decken sie einen noch größeren Bereich von Wellenlängen ab. Solche zusammengesetzten Nanostrukturen sind sehr kompliziert herzustellen, und mindestens ebenso schwierig ist es, diese winzigen Objekte hinterher zu analysieren.

Bei ihrem Blick in die Nanowelt haben die Wissenschaftler nicht schlecht gestaunt: die Säulen hatten nicht, wie geplant, einen Deckel aus InGaN, sondern waren auch an den Seiten damit ummantelt. Dieses Ergebnis, das nur aufgrund der Elektronentomographie zu erreichen war, hat die Wissenschaftler erfreut, da es doch die ungewöhnlichen Lumineszenzeigenschaften der Nanostrukturen erklären konnte und die Leistungsfähigkeit der Methode unterstreicht.

Das Paul-Drude-Institut für Festkörperelektronik (PDI) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Kontakt:
Paul-Drude-Institut für Festkörperelektronik
Dr. Achim Trampert
Tel: 030 20377 280
Mail: trampert@pdi-berlin.de

Weitere Informationen:

http://dx.doi.org/10.1063/1.4914102 - Originalveröffentlichung
http://www.pdi-berlin.de

Gesine Wiemer | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise