Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroskopische Struktur von Quantengasen sichtbar gemacht

20.10.2008
Physiker der Universität Mainz konnten erstmals Verteilung einzelner Atome im Bose-Einstein-Kondensat abbilden / Veröffentlichung in Nature Physics

Wissenschaftlern der Johannes Gutenberg-Universität Mainz ist es gelungen, erstmals die räumliche Verteilung einzelner Atome in einem Bose-Einstein-Kondensat sichtbar zu machen.

Bei Bose-Einstein-Kondensaten handelt es sich um kleine, sehr kalte Gaswolken, die aufgrund ihrer niedrigen Temperaturen nicht mehr durch die klassische Physik, sondern mit den Gesetzen der Quantenmechanik beschrieben werden müssen.

Die ersten Bose-Einstein-Kondensate wurden 1995 von Eric A. Cornell, Carl E. Wieman und Wolfgang Ketterle erzeugt, die dafür bereits sechs Jahre später den Nobelpreis für Physik erhielten. Seither sind diese einzigartigen Gaswolken, die kältesten von Menschen erzeugten Objekte überhaupt, weltweiter Forschungsgegenstand.

Physiker um Dr. Herwig Ott von der Johannes Gutenberg-Universität Mainz, Arbeitsgruppe Quanten-, Atom- und Neutronenphysik (QUANTUM), haben nun eine neue Technik entwickelt, mit der einzelne Atome in einem Bose-Einstein-Kondensat abgebildet werden können. Darüber hinaus übertrifft die erreichte räumliche Auf­lösung der Darstellung alle bisherigen Methoden um ein Vielfaches.
Die Forschungsergebnisse der durch die Deutsche Forschungsgemeinschaft (DFG) geförderten Emmy Noether-Nachwuchsgruppe am Institut für Physik wurden unter dem Titel „High-resolution scanning electron microscopy of an ultracold quantum gas“ in der Fachzeitschrift Nature Physics veröffentlicht.

Möglich wurde dieser Durchbruch durch den Einsatz eines hochauflösenden Rasterelektronenmikroskops (REM), das mithilfe eines sehr feinen Elektronenstrahls die ultrakalte Atomwolke abtastet und so auch kleinste Strukturen sichtbar macht. „Die Übertragung der Elektronenmikroskopie auf ultrakalte Gase war ein technisches Wagnis“, berichtet Dr. Herwig Ott, Leiter der Emmy Noether-Nachwuchsgruppe, „denn hier mussten zwei sehr unterschiedliche Techniken zusammengeführt werden.“
Hinzu kommt, dass sich Atome und Moleküle anders als in Festkörpern in Gasen vollkommen frei und ungeordnet durcheinander bewegen. Ein weiterer Vorteil dieses hochentwickelten Mikroskopieverfahrens besteht in der besseren räumlichen Auflösung im Vergleich zu optischen Verfahren, bei denen das Auflösungsvermögen durch die Wellenlänge des verwendeten Lichts begrenzt ist. „Mit 150 nm Auflösung sind wir in der Lage, etwa 10mal genauer in diese Quantenobjekte hineinzublicken, als es uns bisher möglich war“, so Ott.

Ähnlich wie durch die Elektronenmikroskopie bisher unbekannte Bereiche unserer Welt für den Betrachter erkennbar wurden, eröffnen sich durch die in Mainz entwickelte Technik einzigartige Möglichkeiten, die mikroskopische Struktur der Quantengase zu untersuchen. Einen ersten wichtigen Meilenstein können die Mainzer Physiker bereits vorweisen: Es ist ihnen gelungen, die Struktur eines sogenannten optischen Gitters sichtbar zu machen. Optische Gitter sind Interferenzmuster aus Laserstrahlen, die auf die Atomwolke eingestrahlt werden und dieser ihre periodische Struktur aufzwingen.

Dabei entstehen kristallähnliche Gebilde. Das Interessante dabei ist, dass die Bewegung der Atome eines Quantengases in einem optischen Gitter dem Verhalten von Elektronen in Festkörpern ähnelt. Quantengase sind daher in der Lage, die physikalischen Eigenschaften von Festkörpern zu simulieren und können so auch zur Klärung noch offener Fragestellungen in der Festkörperphysik beitragen.

Kontakt und Informationen:

Dr. Herwig Ott
Quanten-, Atom- und Neutronenphysik (QUANTUM)
Johannes Gutenberg-Universität Mainz
Tel +49 6131 39-23670
Fax +49 6131 39-25179
E-Mail: ott@uni-mainz.de

Dr. Herwig Ott | Uni Mainz
Weitere Informationen:
http://www.quantum.physik.uni-mainz.de/
http://www.nature.com/doifinder/10.1038/nphys1102

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz