Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meteoriteneinschlag im Nano-Format

29.08.2016

Mit energiereichen Ionen lassen sich erstaunliche Nanostrukturen auf Kristalloberflächen erzeugen. Experimente und Berechnungen der TU Wien können diese Effekte nun erklären.

Ein Meteorit, der in flachem Winkel auf die Erde trifft, kann gewaltige Verwüstungen anrichten: Er schrammt über die Erdoberfläche und legt oft eine lange Strecke zurück, bevor er sich endgültig in den Boden bohrt.


Nanostrukturen nach dem Ionenbeschuss: Der Pfeil zeigt die Richtung der Ionen an

TU Wien


Elisabeth Gruber im Labor an der TU Wien

TU Wien

Dort wo er aufschlägt, kann er das Gestein vaporisieren und große Materialmengen aufschmelzen. Am Ende bleibt nicht nur ein Krater oder ein Schutthaufen zurück, sondern auch noch eine ausgedehnte Spur der Verwüstung, vor und hinter der Einschlagstelle.

Ganz ähnlich verhält es sich mit schweren Ionen, die mit hoher Geschwindigkeit auf eine Kristalloberfläche geschossen werden – allerdings auf mikroskopischer Skala. Am Institut für Angewandte Physik der TU Wien untersucht das Team von Prof. Friedrich Aumayr, welche Strukturen sich bilden lassen, wenn man Ionen in flachem Winkel auf Kristalle schießt.

Rillen und Berge

„Wenn wir die Oberfläche der Kristalle mit einem Rasterkraftmikroskop untersuchen, dann erkennen wir sehr deutliche Parallelen zwischen den Spuren der Ionen-Einschläge und einem Meteoriten-Impakt“, sagt Elisabeth Gruber, Dissertantin im Team von Friedrich Aumayr.

„Das unter sehr flachem Winkel einfallende Projektil gräbt zunächst eine Rille in den Kristall, die mehrere hundert Nanometer lang sein kann. Rechts und links davon werden winzige Hügel aufgehäuft, die sogenannten Nanohillocks.“ Dort, wo das Ion dann endgültig unter der Kristalloberfläche verschwindet, bildet sich eine besonders hohe Erhebung. Dahinter kann man den Weg des Projektils noch ein Stück anhand einer Oberflächenerhebung verfolgen, bis es schließlich tiefer in den Kristall eindringt und dann zum Stillstand kommt.

Das klingt intuitiv recht einleuchtend – als könnte man sich Ionen mit hoher Energie vorstellen wie kleine, elektrisch geladene Pistolenkugeln. Doch in Wirklichkeit ist es alles andere als selbstverständlich, dass sich Objekte der Nano-Welt ähnlich verhalten wie große Alltagsobjekte. Wenn es darum geht, wie einzelne Atome ihre Energie untereinander austauschen hat schließlich auch die Quantenphysik ein gewichtiges Wort mitzureden.

„Bei der Wechselwirkung energiereicher Ionen mit Kristalloberflächen – in unserem Fall Kalziumfluorid – können viele verschiedene physikalische Effekte eine Rolle spielen“, sagt Friedrich Aumayr. „So können etwa einzelne Elektronen ihren Energiezustand wechseln, dadurch Energie mit Atomen der Umgebung austauschen und so im Kristall Schwingungen anregen - die sogenannten Phononen. All das muss man berücksichtigen, wenn man diese Art der Nanostrukturbildung untersucht.“

Schmelzen und Verdampfen

Um die Mechanismen genau zu verstehen, die zur Bildung der Nanostrukturen auf der Kristalloberfläche führen, entwickelte das Team in Zusammenarbeit mir deutschen Kollegen umfangreiche Simulationsrechnungen. „Wir sehen dadurch, wie stark sich die Oberfläche an welchen Stellen aufheizt“, erklärt Elisabeth Gruber. „In manchen Bereichen wird es so heiß, dass das Material aufgeschmolzen wird, an bestimmten Stellen kann es sogar verdampfen. Wenn wir wissen, wie groß diese Regionen jeweils sind, können wir auch gut vorhersagen, welche Nanostrukturen sich auf der Oberfläche bilden.“

Solche Forschungsarbeiten dienen nicht nur dazu, besser zu verstehen, wie man Nanostrukturen auf Oberflächen gezielt herstellen kann. Es ist auch wichtig zu untersuchen, wie Materialien durch unerwünschten Ionenbeschuss geschädigt werden. „Kalziumfluorid wird oft als Isolator in der Halbleitertechnik verwendet“, sagt Friedrich Aumayr. „Auch unter extremen Bedingungen, zum Beispiel in Satelliten, die der kosmischen Höhenstrahlung ausgesetzt sind, soll die Elektronik noch funktionieren.“ Wenn das Kalziumfluorid durch Ionenbeschuss durchlöchert wird, kann es im schlimmsten Fall zu einem Kurzschluss und zu einer Zerstörung des Bauteils kommen. Daher ist es wichtig, die Wechselwirkung zwischen Kristalloberflächen und Ionen genau zu untersuchen.

Originalpublikation:
E. Gruber et al., Journal of Physics: Condensed Matter 28 (2016) 405001

Sehr ähnliche Effekte können auch mit langsamen hochgeladenen Ionen erzielt werden, wie die Wiener Gruppe in einer demnächst in der Fachzeitschrift Physical Review Letters erscheinenden Arbeit zeigt.
A.S. El-Said et al., Tuning the fabrication of nanostructures by low-energy highly charged ions, Physical Review Letters accepted for publication 24.08.2016

Rückfragehinweise:
Univ.Prof. Friedrich Aumayr
Technische Universität Wien
Institut für Angewandte Physik
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13430
friedrich.aumayr@tuwien.ac.at

Dipl.-Ing. Elisabeth Gruber
Technische Universität Wien
Institut für Angewandte Physik
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13435
elisabeth.gruber@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/meteor weitere Bilder
http://dx.doi.org/10.1088/0953-8984/28/40/405001 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie