Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meteoriteneinschlag im Nano-Format

29.08.2016

Mit energiereichen Ionen lassen sich erstaunliche Nanostrukturen auf Kristalloberflächen erzeugen. Experimente und Berechnungen der TU Wien können diese Effekte nun erklären.

Ein Meteorit, der in flachem Winkel auf die Erde trifft, kann gewaltige Verwüstungen anrichten: Er schrammt über die Erdoberfläche und legt oft eine lange Strecke zurück, bevor er sich endgültig in den Boden bohrt.


Nanostrukturen nach dem Ionenbeschuss: Der Pfeil zeigt die Richtung der Ionen an

TU Wien


Elisabeth Gruber im Labor an der TU Wien

TU Wien

Dort wo er aufschlägt, kann er das Gestein vaporisieren und große Materialmengen aufschmelzen. Am Ende bleibt nicht nur ein Krater oder ein Schutthaufen zurück, sondern auch noch eine ausgedehnte Spur der Verwüstung, vor und hinter der Einschlagstelle.

Ganz ähnlich verhält es sich mit schweren Ionen, die mit hoher Geschwindigkeit auf eine Kristalloberfläche geschossen werden – allerdings auf mikroskopischer Skala. Am Institut für Angewandte Physik der TU Wien untersucht das Team von Prof. Friedrich Aumayr, welche Strukturen sich bilden lassen, wenn man Ionen in flachem Winkel auf Kristalle schießt.

Rillen und Berge

„Wenn wir die Oberfläche der Kristalle mit einem Rasterkraftmikroskop untersuchen, dann erkennen wir sehr deutliche Parallelen zwischen den Spuren der Ionen-Einschläge und einem Meteoriten-Impakt“, sagt Elisabeth Gruber, Dissertantin im Team von Friedrich Aumayr.

„Das unter sehr flachem Winkel einfallende Projektil gräbt zunächst eine Rille in den Kristall, die mehrere hundert Nanometer lang sein kann. Rechts und links davon werden winzige Hügel aufgehäuft, die sogenannten Nanohillocks.“ Dort, wo das Ion dann endgültig unter der Kristalloberfläche verschwindet, bildet sich eine besonders hohe Erhebung. Dahinter kann man den Weg des Projektils noch ein Stück anhand einer Oberflächenerhebung verfolgen, bis es schließlich tiefer in den Kristall eindringt und dann zum Stillstand kommt.

Das klingt intuitiv recht einleuchtend – als könnte man sich Ionen mit hoher Energie vorstellen wie kleine, elektrisch geladene Pistolenkugeln. Doch in Wirklichkeit ist es alles andere als selbstverständlich, dass sich Objekte der Nano-Welt ähnlich verhalten wie große Alltagsobjekte. Wenn es darum geht, wie einzelne Atome ihre Energie untereinander austauschen hat schließlich auch die Quantenphysik ein gewichtiges Wort mitzureden.

„Bei der Wechselwirkung energiereicher Ionen mit Kristalloberflächen – in unserem Fall Kalziumfluorid – können viele verschiedene physikalische Effekte eine Rolle spielen“, sagt Friedrich Aumayr. „So können etwa einzelne Elektronen ihren Energiezustand wechseln, dadurch Energie mit Atomen der Umgebung austauschen und so im Kristall Schwingungen anregen - die sogenannten Phononen. All das muss man berücksichtigen, wenn man diese Art der Nanostrukturbildung untersucht.“

Schmelzen und Verdampfen

Um die Mechanismen genau zu verstehen, die zur Bildung der Nanostrukturen auf der Kristalloberfläche führen, entwickelte das Team in Zusammenarbeit mir deutschen Kollegen umfangreiche Simulationsrechnungen. „Wir sehen dadurch, wie stark sich die Oberfläche an welchen Stellen aufheizt“, erklärt Elisabeth Gruber. „In manchen Bereichen wird es so heiß, dass das Material aufgeschmolzen wird, an bestimmten Stellen kann es sogar verdampfen. Wenn wir wissen, wie groß diese Regionen jeweils sind, können wir auch gut vorhersagen, welche Nanostrukturen sich auf der Oberfläche bilden.“

Solche Forschungsarbeiten dienen nicht nur dazu, besser zu verstehen, wie man Nanostrukturen auf Oberflächen gezielt herstellen kann. Es ist auch wichtig zu untersuchen, wie Materialien durch unerwünschten Ionenbeschuss geschädigt werden. „Kalziumfluorid wird oft als Isolator in der Halbleitertechnik verwendet“, sagt Friedrich Aumayr. „Auch unter extremen Bedingungen, zum Beispiel in Satelliten, die der kosmischen Höhenstrahlung ausgesetzt sind, soll die Elektronik noch funktionieren.“ Wenn das Kalziumfluorid durch Ionenbeschuss durchlöchert wird, kann es im schlimmsten Fall zu einem Kurzschluss und zu einer Zerstörung des Bauteils kommen. Daher ist es wichtig, die Wechselwirkung zwischen Kristalloberflächen und Ionen genau zu untersuchen.

Originalpublikation:
E. Gruber et al., Journal of Physics: Condensed Matter 28 (2016) 405001

Sehr ähnliche Effekte können auch mit langsamen hochgeladenen Ionen erzielt werden, wie die Wiener Gruppe in einer demnächst in der Fachzeitschrift Physical Review Letters erscheinenden Arbeit zeigt.
A.S. El-Said et al., Tuning the fabrication of nanostructures by low-energy highly charged ions, Physical Review Letters accepted for publication 24.08.2016

Rückfragehinweise:
Univ.Prof. Friedrich Aumayr
Technische Universität Wien
Institut für Angewandte Physik
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13430
friedrich.aumayr@tuwien.ac.at

Dipl.-Ing. Elisabeth Gruber
Technische Universität Wien
Institut für Angewandte Physik
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13435
elisabeth.gruber@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/meteor weitere Bilder
http://dx.doi.org/10.1088/0953-8984/28/40/405001 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

nachricht Innovative High Power LED Light Engine für den UV Bereich
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie