Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie man das Nichts aus dem Gleichgewicht bringt

28.10.2011
Physiker der Universitäten Jena und Graz berechnen Zeitentwicklung des Vakuumzerfalls

Das Nichts – das erforscht ein Team theoretischer Physiker der Universitäten Graz und Jena. „Der Grundzustand unserer Welt ist allerdings nicht einfach durch die Abwesenheit von allem Stofflichen beschrieben", erläutert Prof. Dr. Holger Gies vom Theoretisch-Physikalischen Institut der Friedrich-Schiller-Universität und dem Helmholtz-Institut Jena. „Sondern dieses sogenannte Quantenvakuum entpuppt sich als komplexer Zustand ständig fluktuierender Quantenfelder, der physikalische Eigenschaften trägt."

Die Physikergemeinde weltweit hofft, in wenigen Jahren eine besonders spektakuläre Eigenschaft beobachten zu können: den spontanen Zerfall des Vakuums in Paare von Materie- und Antimaterie-Teilchen in superstarken elektrischen Feldern. Diesem Ziel ist man dank neuer Forschungsergebnisse des deutsch-österreichischen Physikerteams einen Schritt näher gekommen.

Obwohl erste theoretische Überlegungen zum spontanen Zerfall des Vakuums ins Jahr 1931 zurückreichen, steckt ein umfassendes Verständnis noch in den Kinderschuhen. „Eine große Herausforderung der modernen theoretischen Physik ist die Beschreibung von Quantenfeldern fernab vom Gleichgewicht", erklärt Prof. Gies. „Dieses Problem begegnet uns sowohl bei Phasenübergängen im frühen Universum, wie auch in vielen Experimenten der Festkörperphysik." Daher kann ein experimenteller Nachweis des Vakuumzerfalls wie er möglicherweise durch Hochintensitätslaser in naher Zukunft geliefert werden kann, weit über das Fachgebiet hinausreichende Erkenntnisse liefern.

Den Wissenschaftlern aus Graz und Jena gelang es nun, die Zeitentwicklung des Vakuumzerfalls im Detail zu berechnen. „Die Ergebnisse haben uns selbst erstaunt," gesteht Prof. Gies. Materie und Antimaterie-Teilchen zeigen demnach ein neuartiges selbstfokussierendes Verhalten und können so möglicherweise leichter entdeckt werden als erwartet. „Das Quantenvakuum hat schon einige Überraschungen für uns bereitgehalten", so der Heisenberg-Professor für Theoretische Physik. „Dieses Nichts nun aus dem Gleichgewicht zu bringen, könnte sich zu einer neuen fruchtbaren Forschungsrichtung entwickeln."

Die Ergebnisse der Kooperation sind gerade in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht worden; die Online-Version ist zu finden unter: http://link.aps.org/doi/10.1103/PhysRevLett.107.180403.

Original-Publikation:
F. Hebenstreit, R. Alkofer, H. Gies: Particle Self-Bunching in the Schwinger Effect in Spacetime-Dependent Electric Fields, Phys. Rev. Lett. 107, 180403 (2011), DOI: 10.1103/PhysRevLett.107.180403
Kontakt:
Prof. Dr. Holger Gies
Theoretisch-Physikalisches Institut der Friedrich-Schiller-Universität Jena
& Helmholtz-Institut Jena
Max-Wien-Platz 1
07743 Jena
Tel.: 03641 / 947190
E-Mail: Holger.Gies[at]uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.107.180403
http://www.tpi.uni-jena.de/~gies/welcome.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie