Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie man Elektronen entlang chemischer Bindungen verschiebt

25.11.2013
Mit Femtosekunden-Röntgen-Blitzen haben Berliner Forscher die Bewegung von Elektronen in einem starken elektrischen Feld direkt und räumlich aufgelöst abgebildet.

Bewegte Röntgenbilder von kristallinem Lithiumhydrid zeigen, dass die elektrische Abstoßung der Elektronen entscheidenden Einfluss auf die Bewegungsrichtung der Elektronen hat.


Bild 1
Abb.: MBI


Bild 2
Abb.: MBI

Ein ionischer Kristall ist eine regelmäßige Anordnung von postitiv und negativ geladenen Ionen im Raum. Ein Prototypmaterial ist das uns bekannte Kochsalz Natriumchlorid (NaCl) mit würfelförmigen Elementarzellen. Dieser Würfel enthält positiv geladene Na+ Ionen, denen ein Elektron fehlt, das jeweils an ein negativ geladenes Cl- Ion abgegeben wurde (Bild 1).

Ein weiteres Material mit Kochsalzstruktur ist Lithiumhydrid (LiH) bestehend aus Li- und H-Atomen. Im Gegensatz zum ionischen Kochsalz Na+Cl- berechnen sich die Ladungen bei Lithiumhydrid wie Li0.5+H0.5-, eine Art Mischvariante zwischen dem ionsichen Fall Li+H- und dem kovalent gebundenen Fall Li0+H0-, in dem die Atome neutral bleiben. Das spezielle Verhalten von LiH hat seinen Ursprung in den starken, elektrischen Kräften zwischen allen geladenen Teilchen im Kristall.

Die räumliche Anordnung der Elektronen ist durch die Minimierung der elektrischen Gesamtenergie bestimmt. Bei Anlegen eines äußeren elektrischen Feldes werden die Elektronen in Bewegung versetzt, die ebenfalls stark durch die räumlichen Korrelationen aller Elektronen beeinflusst wird. Obwohl Elektronen-Korrelationen ein Thema zahlreicher theoretischer Publikationen sind, sind direkte experimentelle Einsichten in dieses wichtige Thema bislang sehr spärlich.

Ein Forscherteam am Max-Born-Institut konnte nun erstmals solche Elektronen-Korrelationen direkt in Raum und Zeit beobachten, indem es die Elektronenbewegung in Form einer zeitabhängigen Landkarte der Elektronenverteilung erfasste.

In den Experimenten werden die Elektronen durch ein sehr starkes elektrisches Feld in Bewegung gesetzt, welches nur in einem sehr kurzen Zeitinterval von 50 fs (1 fs = 10-15 s) mittels eines optischen Lichtimpulses an den LiH-Kristall angelegt wird. Die veränderte Elektronenverteilung wird mittels 100 fs langen Röntgenblitzen, die an der Probe gestreut werden, gemessen.

In der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters http://prl.aps.org/abstract/PRL/v111/i21/e217401 [111, 217401 (2013)] präsentieren Vincent Juvé, Marcel Holtz, Flavio Zamponi, Michael Wörner, Thomas Elsässer und Andreas Borgschulte zeitabhängige Elektronendichte-Landkarten, die eine extrem schnelle Verschiebung von elektronischer Ladung von den Li0.5+ zu den H0.5- Ionen über eine Distanz von 0.2 Nanometer (1 nm = 1 Milliarstel Meter) zeigen. Dieses völlig unerwartete Verhalten bedeutet, dass das Material bei Anlegen eines elektrischen Feldes mehr ionisch wird. Diese Beobachtung steht im Gegensatz zum üblichen Verhalten ionischer Systeme, etwa von LiBH4 oder NaBH4.

Da das elektrische Feld des optischen Impulses seine Richtung alle 1.3 fs wechselt, wird das Elektron zwischen zwei Ionen etwa mit einem Prozent der Lichtgeschwindigkeit (c = 300.000 km/s) hin und her gezogen. Nach dem optischen Impuls kehrt das Elektron zurück und die ursprüngliche Elektronverteilung ist wieder hergestellt. Qualitativ lässt sich die unerwartete Elektronenbewegung folgendermaßen erklären: Das elektrische Feld beschleunigt die Elektronen in einer Weise, dass sie gleichmäßiger über die Elementarzelle verteilt werden.

Da Li ursprünglich mehr Elektronen hat, führt diese Umverteilung zum Verlust von Elektronen. Aufgrund der sehr kleinen Anzahl von Elektronen in LiH tragen alle Elektronen zu diesem Effekt bei, sodass die Elektronenverteilung sehr empfindlich auf Korrelationseffekte ist, was theoretische Berechnungen bestätigen.

Die Manipulation von Elektronenverteilungen mittels starker elektrischer Felder stellt eine interessante Möglichkeit dar, die Matrialeigenschaften auf sehr kurzen Zeitskalen zu kontrollieren, welche beispielsweise in ultraschnellen elektrischen Schaltern technische Anwendung finden könnte.

Bild 1:
Kristalle mit Kochsalzstruktur. Oberer Kristall: Kochsalz (NaCl) mit blauen Kugeln für die Na+ Ionen und grünen Kugeln für die Cl- Ionen. Unterer Kristall: Lithiumhydrid (LiH) mit kleinen blauen Kugeln für die Li0.5+ Ionen und weißen Kugel für die H0.5- Ionen. Die grau schattierte Ebene zeigt die Schnittebene für die Elektronendichte-Landkarten in Bild 2.
Bild 2:
Elektronendichte-Landkarten von LiH in der grau-schattierten Ebene von Bild 1 für Zeiten vor (linkes Teilbild), während (mittleres Teilbild) und nach (rechtes Teilbild) der Wechselwirkung mit dem starken elektrischen Feld des optischen Lichtimpulses. Die Konturbilder zeigen die Elektronendichte (Ladung pro Volumen). Das elektrische Feld bewegt elektronische Ladung von den Li0.5+ zu den H0.5- Ionen, was das Material mehr ionisch macht
Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Dr. Michael Wörner, Tel: +49-30-6392 1470, woerner@mbi-berlin.de
Dr. Vincent Juve, Tel.: +49-30-6392 1472, juve@mbi-berlin.de Prof. Thomas Elsässer, Tel.: +49-30-6392 1400, elsasser@mbi-berlin.de

Weitere Informationen:

http://prl.aps.org/abstract/PRL/v111/i21/e217401
- Originalveröffentlichung
http://www.fv-berlin.de/news/wie-man-elektronen-entlang-chemischer-bindungen-verschiebt?set_language=de

- Pressemitteilung (mit Formeln)

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ruckartige Bewegung schärft Röntgenpulse
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise