Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie man Elektronen entlang chemischer Bindungen verschiebt

25.11.2013
Mit Femtosekunden-Röntgen-Blitzen haben Berliner Forscher die Bewegung von Elektronen in einem starken elektrischen Feld direkt und räumlich aufgelöst abgebildet.

Bewegte Röntgenbilder von kristallinem Lithiumhydrid zeigen, dass die elektrische Abstoßung der Elektronen entscheidenden Einfluss auf die Bewegungsrichtung der Elektronen hat.


Bild 1
Abb.: MBI


Bild 2
Abb.: MBI

Ein ionischer Kristall ist eine regelmäßige Anordnung von postitiv und negativ geladenen Ionen im Raum. Ein Prototypmaterial ist das uns bekannte Kochsalz Natriumchlorid (NaCl) mit würfelförmigen Elementarzellen. Dieser Würfel enthält positiv geladene Na+ Ionen, denen ein Elektron fehlt, das jeweils an ein negativ geladenes Cl- Ion abgegeben wurde (Bild 1).

Ein weiteres Material mit Kochsalzstruktur ist Lithiumhydrid (LiH) bestehend aus Li- und H-Atomen. Im Gegensatz zum ionischen Kochsalz Na+Cl- berechnen sich die Ladungen bei Lithiumhydrid wie Li0.5+H0.5-, eine Art Mischvariante zwischen dem ionsichen Fall Li+H- und dem kovalent gebundenen Fall Li0+H0-, in dem die Atome neutral bleiben. Das spezielle Verhalten von LiH hat seinen Ursprung in den starken, elektrischen Kräften zwischen allen geladenen Teilchen im Kristall.

Die räumliche Anordnung der Elektronen ist durch die Minimierung der elektrischen Gesamtenergie bestimmt. Bei Anlegen eines äußeren elektrischen Feldes werden die Elektronen in Bewegung versetzt, die ebenfalls stark durch die räumlichen Korrelationen aller Elektronen beeinflusst wird. Obwohl Elektronen-Korrelationen ein Thema zahlreicher theoretischer Publikationen sind, sind direkte experimentelle Einsichten in dieses wichtige Thema bislang sehr spärlich.

Ein Forscherteam am Max-Born-Institut konnte nun erstmals solche Elektronen-Korrelationen direkt in Raum und Zeit beobachten, indem es die Elektronenbewegung in Form einer zeitabhängigen Landkarte der Elektronenverteilung erfasste.

In den Experimenten werden die Elektronen durch ein sehr starkes elektrisches Feld in Bewegung gesetzt, welches nur in einem sehr kurzen Zeitinterval von 50 fs (1 fs = 10-15 s) mittels eines optischen Lichtimpulses an den LiH-Kristall angelegt wird. Die veränderte Elektronenverteilung wird mittels 100 fs langen Röntgenblitzen, die an der Probe gestreut werden, gemessen.

In der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters http://prl.aps.org/abstract/PRL/v111/i21/e217401 [111, 217401 (2013)] präsentieren Vincent Juvé, Marcel Holtz, Flavio Zamponi, Michael Wörner, Thomas Elsässer und Andreas Borgschulte zeitabhängige Elektronendichte-Landkarten, die eine extrem schnelle Verschiebung von elektronischer Ladung von den Li0.5+ zu den H0.5- Ionen über eine Distanz von 0.2 Nanometer (1 nm = 1 Milliarstel Meter) zeigen. Dieses völlig unerwartete Verhalten bedeutet, dass das Material bei Anlegen eines elektrischen Feldes mehr ionisch wird. Diese Beobachtung steht im Gegensatz zum üblichen Verhalten ionischer Systeme, etwa von LiBH4 oder NaBH4.

Da das elektrische Feld des optischen Impulses seine Richtung alle 1.3 fs wechselt, wird das Elektron zwischen zwei Ionen etwa mit einem Prozent der Lichtgeschwindigkeit (c = 300.000 km/s) hin und her gezogen. Nach dem optischen Impuls kehrt das Elektron zurück und die ursprüngliche Elektronverteilung ist wieder hergestellt. Qualitativ lässt sich die unerwartete Elektronenbewegung folgendermaßen erklären: Das elektrische Feld beschleunigt die Elektronen in einer Weise, dass sie gleichmäßiger über die Elementarzelle verteilt werden.

Da Li ursprünglich mehr Elektronen hat, führt diese Umverteilung zum Verlust von Elektronen. Aufgrund der sehr kleinen Anzahl von Elektronen in LiH tragen alle Elektronen zu diesem Effekt bei, sodass die Elektronenverteilung sehr empfindlich auf Korrelationseffekte ist, was theoretische Berechnungen bestätigen.

Die Manipulation von Elektronenverteilungen mittels starker elektrischer Felder stellt eine interessante Möglichkeit dar, die Matrialeigenschaften auf sehr kurzen Zeitskalen zu kontrollieren, welche beispielsweise in ultraschnellen elektrischen Schaltern technische Anwendung finden könnte.

Bild 1:
Kristalle mit Kochsalzstruktur. Oberer Kristall: Kochsalz (NaCl) mit blauen Kugeln für die Na+ Ionen und grünen Kugeln für die Cl- Ionen. Unterer Kristall: Lithiumhydrid (LiH) mit kleinen blauen Kugeln für die Li0.5+ Ionen und weißen Kugel für die H0.5- Ionen. Die grau schattierte Ebene zeigt die Schnittebene für die Elektronendichte-Landkarten in Bild 2.
Bild 2:
Elektronendichte-Landkarten von LiH in der grau-schattierten Ebene von Bild 1 für Zeiten vor (linkes Teilbild), während (mittleres Teilbild) und nach (rechtes Teilbild) der Wechselwirkung mit dem starken elektrischen Feld des optischen Lichtimpulses. Die Konturbilder zeigen die Elektronendichte (Ladung pro Volumen). Das elektrische Feld bewegt elektronische Ladung von den Li0.5+ zu den H0.5- Ionen, was das Material mehr ionisch macht
Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Dr. Michael Wörner, Tel: +49-30-6392 1470, woerner@mbi-berlin.de
Dr. Vincent Juve, Tel.: +49-30-6392 1472, juve@mbi-berlin.de Prof. Thomas Elsässer, Tel.: +49-30-6392 1400, elsasser@mbi-berlin.de

Weitere Informationen:

http://prl.aps.org/abstract/PRL/v111/i21/e217401
- Originalveröffentlichung
http://www.fv-berlin.de/news/wie-man-elektronen-entlang-chemischer-bindungen-verschiebt?set_language=de

- Pressemitteilung (mit Formeln)

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie