Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie man Atome verwirrt

21.07.2010
Neuer Mechanismus der Glasbildung entdeckt

Forschern von der Christian-Albrechts-Universität zu Kiel um Professor Franz Faupel ist es weltweit erstmalig gelungen, die Beweglichkeit aller Elemente einer glasbildenden Legierung über den gesamten relevanten Temperaturbereich zu bestimmen.

Wie die Wissenschaftler in dem renommierten Fachjournal Physical Review Letters berichten, konnten sie in der Legierung Pd43Cu27Ni10P20 durch ihre Messungen einen fundamentalen Mechanismus der Glasbildung identifizieren. Sie zeigten, dass die Beweglichkeit der großen Palladiumatome während des Abkühlens der Schmelze kurz vor dem Erstarren zum Glas rund 10.000 Mal geringer ist als die der übrigen Elemente.

Massive metallische Gläser besitzen einzigartige Eigenschaften und sind eine der am intensivsten untersuchten Materialklassen unserer Zeit. Sie sind deutlich härter als herkömmliche Stähle, zudem hoch elastisch und oft extrem korrosionsfest. Dabei können metallische Gläser hochpräzise und so einfach wie Plastik verarbeitet werden − kurz: ein Supermaterial. Wäre es nicht so kompliziert herzustellen. Denn beim Abkühlen der Metallschmelze muss die regelmäßige Anordnung der Atome, die so genannte Kristallisation, verhindert werden, um die atomare Unordnung der Schmelze einzufrieren. Das Verständnis, wie man Atome in Legierungen gezielt "verwirren" und damit die Kristallisation verhindern kann, ist also ein Schlüssel zur Beherrschung der Glasbildung. Bislang gab es jedoch keine Experimente, welche die genauen physikalischen Vorgänge der Glasbildung erklärten.

Nun gelang es Forschern von der Christian-Albrechts-Universität zu Kiel um Professor Franz Faupel weltweit erstmalig, die Beweglichkeit (Diffusionskoeffizienten) aller Elemente einer glasbildenden Legierung über den gesamten relevanten Temperaturbereich zu bestimmen. Wie die Wissenschaftler in dem renommierten Fachjournal Physical Review Letters (PRL 104, 195901 (2010)) berichten, konnten sie in der Legierung Pd43Cu27Ni10P20 durch ihre Messungen einen fundamentalen Mechanismus der Glasbildung identifizieren. Sie zeigten, dass die Beweglichkeit der großen Palladiumatome während des Abkühlens der Schmelze kurz vor dem Erstarren zum Glas rund 10.000 Mal geringer ist, als die Beweglichkeit der übrigen Elemente. "Computersimulationen zufolge bilden die größten Atome in der Schmelze eine Art Käfig, in dem die anderen Atome eingesperrt werden. Bisher konnte dieser Vorgang aber experimentell nicht beobachtet werden", erklärt Faupel. Die verhältnismäßig großen Palladiumatome bilden dabei ein starres Netzwerk, noch lange bevor die Glassübergangstemperatur erreicht ist, bei der die flüssige Schmelze zum festen Körper erstarrt. Das langsame Untersystem der Palladiumatome verhindert dadurch eine schnelle Kristallisation der Legierung, so dass auch eine niedrige Kühlrate genügt, um die flüssige Unordnung einzufrieren.

"Der von uns entdeckte Mechanismus der Glasbildung ist so bedeutend, da er von universeller Natur ist", freut sich Faupel. Die Ergebnisse verbessern daher das Verständnis des Übergangs eines mehrkomponentigen Materials vom flüssigen zum glasförmigen Zustand. Die Jagd nach preiswerten glasbildenden Legierungen für technische Alltagsanwendungen ist in vollem Gange. Dank des besseren Verständnisses der Vorgänge bei der Glasbildung kann zukünftig zielstrebiger nach glasbildenden Legierungen gesucht werden.

Eine Abbildung zum Thema steht zum Download bereit unter:
http://www.uni-kiel.de/download/pm/2010/2010-119-1.jpg
Bildunterschrift: Die großen Palladiumatome (grau) der Legierung Pd43Cu27Ni10P20 bilden noch in der flüssigen Schmelze ein starres Netzwerk, in dem die anderen Atome wie in einem Käfig gefangen werden. Das schwer bewegliche Gerüst bremst die Kristallisation, weshalb bereits eine geringe Kühlrate ausreicht, um ein metallisches Glas zu erzeugen.

Abbildung: Björn Gojdka, Copyright: CAU

Kontakt:

Prof. Dr. Franz Faupel
Institut für Materialwissenschaft – Materialverbunde
Christian-Albrechts-Universität, Kaiserstraße 2, D-24143 Kiel
Telefon: +49(0)431/880-6226
E-Mail: ff@tf.uni-kiel.de
Prof. Dr. Klaus Rätzke
Institut für Materialwissenschaft – Materialverbunde
Christian-Albrechts-Universität, Kaiserstraße 2, D-24143 Kiel
Telefon: +49(0)431/880-6227
E-Mail: kr@tf.uni-kiel.de

Dr. Anke Feiler-Kramer | idw
Weitere Informationen:
http://www.uni-kiel.de/download/pm/2010/2010-119-1.jpg
http://www.uni-kiel.de/aktuell/pm/2010/2010-119-metallische-glaeser.shtml

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz