Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie man Atome verwirrt

21.07.2010
Neuer Mechanismus der Glasbildung entdeckt

Forschern von der Christian-Albrechts-Universität zu Kiel um Professor Franz Faupel ist es weltweit erstmalig gelungen, die Beweglichkeit aller Elemente einer glasbildenden Legierung über den gesamten relevanten Temperaturbereich zu bestimmen.

Wie die Wissenschaftler in dem renommierten Fachjournal Physical Review Letters berichten, konnten sie in der Legierung Pd43Cu27Ni10P20 durch ihre Messungen einen fundamentalen Mechanismus der Glasbildung identifizieren. Sie zeigten, dass die Beweglichkeit der großen Palladiumatome während des Abkühlens der Schmelze kurz vor dem Erstarren zum Glas rund 10.000 Mal geringer ist als die der übrigen Elemente.

Massive metallische Gläser besitzen einzigartige Eigenschaften und sind eine der am intensivsten untersuchten Materialklassen unserer Zeit. Sie sind deutlich härter als herkömmliche Stähle, zudem hoch elastisch und oft extrem korrosionsfest. Dabei können metallische Gläser hochpräzise und so einfach wie Plastik verarbeitet werden − kurz: ein Supermaterial. Wäre es nicht so kompliziert herzustellen. Denn beim Abkühlen der Metallschmelze muss die regelmäßige Anordnung der Atome, die so genannte Kristallisation, verhindert werden, um die atomare Unordnung der Schmelze einzufrieren. Das Verständnis, wie man Atome in Legierungen gezielt "verwirren" und damit die Kristallisation verhindern kann, ist also ein Schlüssel zur Beherrschung der Glasbildung. Bislang gab es jedoch keine Experimente, welche die genauen physikalischen Vorgänge der Glasbildung erklärten.

Nun gelang es Forschern von der Christian-Albrechts-Universität zu Kiel um Professor Franz Faupel weltweit erstmalig, die Beweglichkeit (Diffusionskoeffizienten) aller Elemente einer glasbildenden Legierung über den gesamten relevanten Temperaturbereich zu bestimmen. Wie die Wissenschaftler in dem renommierten Fachjournal Physical Review Letters (PRL 104, 195901 (2010)) berichten, konnten sie in der Legierung Pd43Cu27Ni10P20 durch ihre Messungen einen fundamentalen Mechanismus der Glasbildung identifizieren. Sie zeigten, dass die Beweglichkeit der großen Palladiumatome während des Abkühlens der Schmelze kurz vor dem Erstarren zum Glas rund 10.000 Mal geringer ist, als die Beweglichkeit der übrigen Elemente. "Computersimulationen zufolge bilden die größten Atome in der Schmelze eine Art Käfig, in dem die anderen Atome eingesperrt werden. Bisher konnte dieser Vorgang aber experimentell nicht beobachtet werden", erklärt Faupel. Die verhältnismäßig großen Palladiumatome bilden dabei ein starres Netzwerk, noch lange bevor die Glassübergangstemperatur erreicht ist, bei der die flüssige Schmelze zum festen Körper erstarrt. Das langsame Untersystem der Palladiumatome verhindert dadurch eine schnelle Kristallisation der Legierung, so dass auch eine niedrige Kühlrate genügt, um die flüssige Unordnung einzufrieren.

"Der von uns entdeckte Mechanismus der Glasbildung ist so bedeutend, da er von universeller Natur ist", freut sich Faupel. Die Ergebnisse verbessern daher das Verständnis des Übergangs eines mehrkomponentigen Materials vom flüssigen zum glasförmigen Zustand. Die Jagd nach preiswerten glasbildenden Legierungen für technische Alltagsanwendungen ist in vollem Gange. Dank des besseren Verständnisses der Vorgänge bei der Glasbildung kann zukünftig zielstrebiger nach glasbildenden Legierungen gesucht werden.

Eine Abbildung zum Thema steht zum Download bereit unter:
http://www.uni-kiel.de/download/pm/2010/2010-119-1.jpg
Bildunterschrift: Die großen Palladiumatome (grau) der Legierung Pd43Cu27Ni10P20 bilden noch in der flüssigen Schmelze ein starres Netzwerk, in dem die anderen Atome wie in einem Käfig gefangen werden. Das schwer bewegliche Gerüst bremst die Kristallisation, weshalb bereits eine geringe Kühlrate ausreicht, um ein metallisches Glas zu erzeugen.

Abbildung: Björn Gojdka, Copyright: CAU

Kontakt:

Prof. Dr. Franz Faupel
Institut für Materialwissenschaft – Materialverbunde
Christian-Albrechts-Universität, Kaiserstraße 2, D-24143 Kiel
Telefon: +49(0)431/880-6226
E-Mail: ff@tf.uni-kiel.de
Prof. Dr. Klaus Rätzke
Institut für Materialwissenschaft – Materialverbunde
Christian-Albrechts-Universität, Kaiserstraße 2, D-24143 Kiel
Telefon: +49(0)431/880-6227
E-Mail: kr@tf.uni-kiel.de

Dr. Anke Feiler-Kramer | idw
Weitere Informationen:
http://www.uni-kiel.de/download/pm/2010/2010-119-1.jpg
http://www.uni-kiel.de/aktuell/pm/2010/2010-119-metallische-glaeser.shtml

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie