Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie man Atome verwirrt

21.07.2010
Neuer Mechanismus der Glasbildung entdeckt

Forschern von der Christian-Albrechts-Universität zu Kiel um Professor Franz Faupel ist es weltweit erstmalig gelungen, die Beweglichkeit aller Elemente einer glasbildenden Legierung über den gesamten relevanten Temperaturbereich zu bestimmen.

Wie die Wissenschaftler in dem renommierten Fachjournal Physical Review Letters berichten, konnten sie in der Legierung Pd43Cu27Ni10P20 durch ihre Messungen einen fundamentalen Mechanismus der Glasbildung identifizieren. Sie zeigten, dass die Beweglichkeit der großen Palladiumatome während des Abkühlens der Schmelze kurz vor dem Erstarren zum Glas rund 10.000 Mal geringer ist als die der übrigen Elemente.

Massive metallische Gläser besitzen einzigartige Eigenschaften und sind eine der am intensivsten untersuchten Materialklassen unserer Zeit. Sie sind deutlich härter als herkömmliche Stähle, zudem hoch elastisch und oft extrem korrosionsfest. Dabei können metallische Gläser hochpräzise und so einfach wie Plastik verarbeitet werden − kurz: ein Supermaterial. Wäre es nicht so kompliziert herzustellen. Denn beim Abkühlen der Metallschmelze muss die regelmäßige Anordnung der Atome, die so genannte Kristallisation, verhindert werden, um die atomare Unordnung der Schmelze einzufrieren. Das Verständnis, wie man Atome in Legierungen gezielt "verwirren" und damit die Kristallisation verhindern kann, ist also ein Schlüssel zur Beherrschung der Glasbildung. Bislang gab es jedoch keine Experimente, welche die genauen physikalischen Vorgänge der Glasbildung erklärten.

Nun gelang es Forschern von der Christian-Albrechts-Universität zu Kiel um Professor Franz Faupel weltweit erstmalig, die Beweglichkeit (Diffusionskoeffizienten) aller Elemente einer glasbildenden Legierung über den gesamten relevanten Temperaturbereich zu bestimmen. Wie die Wissenschaftler in dem renommierten Fachjournal Physical Review Letters (PRL 104, 195901 (2010)) berichten, konnten sie in der Legierung Pd43Cu27Ni10P20 durch ihre Messungen einen fundamentalen Mechanismus der Glasbildung identifizieren. Sie zeigten, dass die Beweglichkeit der großen Palladiumatome während des Abkühlens der Schmelze kurz vor dem Erstarren zum Glas rund 10.000 Mal geringer ist, als die Beweglichkeit der übrigen Elemente. "Computersimulationen zufolge bilden die größten Atome in der Schmelze eine Art Käfig, in dem die anderen Atome eingesperrt werden. Bisher konnte dieser Vorgang aber experimentell nicht beobachtet werden", erklärt Faupel. Die verhältnismäßig großen Palladiumatome bilden dabei ein starres Netzwerk, noch lange bevor die Glassübergangstemperatur erreicht ist, bei der die flüssige Schmelze zum festen Körper erstarrt. Das langsame Untersystem der Palladiumatome verhindert dadurch eine schnelle Kristallisation der Legierung, so dass auch eine niedrige Kühlrate genügt, um die flüssige Unordnung einzufrieren.

"Der von uns entdeckte Mechanismus der Glasbildung ist so bedeutend, da er von universeller Natur ist", freut sich Faupel. Die Ergebnisse verbessern daher das Verständnis des Übergangs eines mehrkomponentigen Materials vom flüssigen zum glasförmigen Zustand. Die Jagd nach preiswerten glasbildenden Legierungen für technische Alltagsanwendungen ist in vollem Gange. Dank des besseren Verständnisses der Vorgänge bei der Glasbildung kann zukünftig zielstrebiger nach glasbildenden Legierungen gesucht werden.

Eine Abbildung zum Thema steht zum Download bereit unter:
http://www.uni-kiel.de/download/pm/2010/2010-119-1.jpg
Bildunterschrift: Die großen Palladiumatome (grau) der Legierung Pd43Cu27Ni10P20 bilden noch in der flüssigen Schmelze ein starres Netzwerk, in dem die anderen Atome wie in einem Käfig gefangen werden. Das schwer bewegliche Gerüst bremst die Kristallisation, weshalb bereits eine geringe Kühlrate ausreicht, um ein metallisches Glas zu erzeugen.

Abbildung: Björn Gojdka, Copyright: CAU

Kontakt:

Prof. Dr. Franz Faupel
Institut für Materialwissenschaft – Materialverbunde
Christian-Albrechts-Universität, Kaiserstraße 2, D-24143 Kiel
Telefon: +49(0)431/880-6226
E-Mail: ff@tf.uni-kiel.de
Prof. Dr. Klaus Rätzke
Institut für Materialwissenschaft – Materialverbunde
Christian-Albrechts-Universität, Kaiserstraße 2, D-24143 Kiel
Telefon: +49(0)431/880-6227
E-Mail: kr@tf.uni-kiel.de

Dr. Anke Feiler-Kramer | idw
Weitere Informationen:
http://www.uni-kiel.de/download/pm/2010/2010-119-1.jpg
http://www.uni-kiel.de/aktuell/pm/2010/2010-119-metallische-glaeser.shtml

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie