Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetismus macht Kühlschränke stromsparender

19.05.2009
Mikrostruktur als Schlüssel zum idealen Kühl-Material

Kühltechnologie, die aufgrund der magnetischen Eigenschaften bestimmter Materialien funktioniert, hat das Potenzial, Kühlschränke und Klimaanlagen energieeffizienter und umweltfreundlicher zu machen.

Noch funktioniert das nur im Labor, doch haben Wissenschaftler am Imperial College London (ICL) nun gezeigt, das kristalline Strukturen in verschiedenen Legierungen direkt beeinflussen, wie stark sich diese Metalle unter einem Magnetfeld erwärmen und ohne dieses abkühlen. So können sie beurteilen, welche Substanzen besonders vielversprechend für die magnetische Kühlung sind.

"Das ist eine spannende Entdeckung, denn das bedeutet, dass wir eventuell maßgeschneiderte Materialien aufbauen können", sagt Lesley Cohen, Physikprofessor am ICL. Dadurch könnten magnetische Kühlschränke Realität werden.

"Das ist von großer Bedeutung, denn eine energieeffiziente Alternative zu unseren jetzigen Kühlschränken und Klimaanlagen ist entscheidend, um CO2-Emissionen zu reduzieren und dem Klimawandel zu begegnen", betont Cohen. Der Energieverbrauch magnetischer Kühlsysteme könnte laut ICL 20 bis 30 Prozent unter dem der aktuell besten Lösungen liegen. Insgesamt bedeutet das ein gigantisches Sparpotenzial, da etwa in den USA in den Sommermonaten rund die Hälfte des Energieverbrauchs allein für Kühlung aufgewendet wird. Ein weiterer Vorteil der magnetischen Kühlung ist, dass bei der Herstellung entsprechender Geräte auf Ozon-Killer und Treibhausgase verzichtet werden könnte.

Das Kühlkonzept funktioniert so, dass ein magnetisches Material - meist eine Metalllegierung - einem äußeren Magnetfeld ausgesetzt wird und sich erwärmt. Die entstehende Hitze wird durch Wasserkühlung abgeführt, um wieder die ursprüngliche Temperatur zu erreichen. Wird danach das Magnetfeld abgeschaltet, kühlt das Material noch deutlich weiter ab. Im Labor wurde das bereits erfolgreich umgesetzt. Für die praktische Anwendung etwa bei Kühlschränken sind allerdings Materialien erforderlich, die bei Raumtemperatur einen starken Kühleffekt erzielen können und nicht an Effizienz verlieren, wenn der Kühl- und damit Magnetisierungsvorgang oft wiederholt wird.

Die ICL-Forscher haben nun genau untersucht, wie sich die Temperatur verschiedener Materialien verändert, wenn sie aus einem Magnetfeld entfernt werden und welche physikalischen Prozesse dabei ablaufen. "Unsere Arbeit zeigt, wie wichtig es ist, die Struktur der Materialien und ihre Reaktion auf Magnetfelder auf mikroskopischer Ebene zu verstehen", sagt Cohen. Aufgrund der gewonnenen Erkenntnisse könnte es möglich werden, ein Material mit der Mikrostruktur beginnend so aufzubauen, dass es die Anforderungen für einen magnetischen Kühlschrank perfekt erfüllt.

Thomas Pichler | pressetext.austria
Weitere Informationen:
http://www.imperial.ac.uk

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die schnellste lichtgetriebene Stromquelle der Welt
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie