Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magdeburger Physiker in "Nature" zu überraschenden Eigenschaften von Licht aus Halbleiter-Mikrolasern

13.07.2009
Unerwartete Effekte bei der zeitlichen Abfolge von Photonen im Laserstrahl hat der Magdeburger Physiker Jan Wiersig vorhergesagt. Gemeinsam mit seinen Kooperationspartnern aus Bremen, Dortmund und Würzburg berichtete der Professor für Theoretische Physik an der Otto-von-Guericke-Universität Magdeburg in der renommierten Wissenschaftszeitschrift "Nature" über das Quantenlicht aus Halbleiter-Mikrolasern (Nature, Vol. 460, 9. Juli 2009).

Laser als künstliche Quellen für intensives und gerichtetes Licht mit präzise definierter Farbe sind heutzutage sowohl für die Grundlagenforschung als auch für die angewandte Forschung unverzichtbar.

Insbesondere Laser aus Halbleitermaterialien finden bereits vielfältige Anwendungen in unserer Alltagswelt, z.B in Laserdruckern, CD-Spielern, DVD-Geräten, in Barcodelesegeräten oder bei der optischen Datenübertragung durch Glasfaserkabel. Parallel mit der fortschreitenden Miniaturisierung von Halbleiterbauelementen in der Computerindustrie werden auch Halbleiterlaser immer winziger.

Die Herstellung von Lasern mit einer räumlichen Ausdehnung von nur noch wenigen millionstel Metern ist heutzutage möglich. Von solchen Mikrolasern verspricht man sich eine sehr niedrige Laserschwelle, d.h. es wird extrem wenig Energie für den Laserbetrieb benötigt.

Seit ca. 100 Jahren ist bekannt, dass Licht sich wie ein Strom aus kleinen Paketen, den sogenannten Lichtquanten oder auch Photonen, verhalten kann. Der Nobelpreisträger Roy Glauber schlug in der 60er Jahren vor, Lichtquellen anhand der zeitlichen Abfolge der von ihnen ausgesendeten Photonen zu charakterisieren. Die praktische Umsetzung dieser Idee war jedoch bislang stark eingeschränkt, da es für moderne Laser keine Detektoren mit der nötigen Zeitauflösung gab. In der aktuellen Ausgabe der Zeitschrift "Nature" stellt Prof. Dr. Manfred Bayers Arbeitsgruppe in Dortmund einen Detektor vor, der einzelne Photonen mit einer Zeitauflösung von einer billionstel Sekunde erfassen kann. Messungen an Mikrolaser aus der Gruppe von Prof. Dr. Alfred Forchel aus Würzburg und Prof. Dr. Detlef Hommel aus Bremen zeigen dabei neuartige Effekte.

So findet man, das nahe der Laserschwelle die Wahrscheinlichkeit für das gleichzeitige Aussenden von zwei Photonen im Vergleich zu einem konventionellen Laser reduziert ist. Darüber hinaus ist die Wahrscheinlichkeit für das Aussenden von zwei Photonen zu unterschiedlichen Zeiten regelmäßigen Schwankungen unterworfen. Prof. Dr. Jan Wiersig von der Otto-von-Guericke-Universität hat mit seinen Kollegen Dr. Christopher Gies und Prof. Dr. Frank Jahnke von der Universität Bremen diese Effekte theoretisch vorhergesagt und in Computermodellrechnungen bestätigt.

Ansprechpartner:
Prof. Dr. Jan Wiersig; Institut für Theoretische Physik; Otto-von-Guericke-Universität Magdeburg; Tel. 0391 67-18670; E-Mail: jan.wiersig@ovgu.de

Katharina Vorwerk | idw
Weitere Informationen:
http://www.uni-magdeburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

nachricht Sind Zeitreisen physikalisch möglich?
26.06.2017 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblick ins geschlossene Enzym

26.06.2017 | Biowissenschaften Chemie

Laser – World of Photonics: Offene und flexible Montageplattform für optische Systeme

26.06.2017 | Messenachrichten

Biophotonische Innovationen auf der LASER World of PHOTONICS 2017

26.06.2017 | Messenachrichten