Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtwellenelektronik an scharfen Metallspitzen

07.07.2011
Wissenschaftler am Max-Planck-Institut für Quantenoptik steuern erstmals die Elektronenemission aus Metallspitzen mit Femtosekunden-Laserpulsen.

Die Steuerung von Elektronen durch intensive phasenstabile Lichtpulse von nur einigen Femtosekunden Dauer erlaubt es, physikalische Prozesse auf der Attosekundenskala aufzulösen. Die selbständige Forschungsgruppe Ultraschnelle Quantenoptik von Dr. Peter Hommelhoff (Max-Planck-Institut für Quantenoptik) hat diese Methode jetzt auf Festkörperoberflächen angewandt, genauer gesagt, auf extrem scharfe Metallspitzen (Nature, 7. Juli 2011).


Mit einem Laserpuls beleuchtete Metallspitze. Foto: Thorsten Naeser, MPQ


Typische zeitliche Struktur des elektrischen Feldes von Femtosekunden-Laserpulsen. Die maximalen Auslenkungen der Lichtschwingung (blau) hängt von ihrer Phase relativ zum Pulsmaximum (der Einhüllenden, grün) ab. Beim linken Puls beträgt diese Phasendifferenz 180 Grad, beim rechten Puls 0 Grad. Grafik: MPQ

Dabei konnten die Wissenschaftler zeigen, dass bereits vergleichsweise kleine Laserintensitäten ausreichen, um die Elektronenemission mit der Phase der Lichtschwingung stark zu beeinflussen und zu steuern. Die beobachtete Modulation des resultierenden Energiespektrums lässt sich – in Einklang mit numerischen Rechnungen – mit einer phasenabhängigen kohärenten Interferenz von Elektronenwellenpaketen deuten. Neben Anwendungen in der Grundlagenforschung ist die neue Technik auch von praktischem Interesse: Die experimentelle Anordnung stellt ein einfaches, miniaturisierbares und extrem empfindliches Gerät für die Phasenmessung von Laserpulsen dar und könnte zudem die Konstruktion von ultraschnellen optischen Transistoren ermöglichen.

Kernstück des Experiments ist eine Wolframspitze (Abb. 1), die mit kurzen Laserpulsen von nur einigen Femtosekunden Dauer bestrahlt wird (eine Femtosekunde entspricht einem Millionstel eines Milliardstels einer Sekunde, Abb. 2). Ist der Laserpuls intensiv genug, können die Elektronen in der Spitze so viel Energie aus dem Lichtfeld aufnehmen, dass sie aus dem Metall austreten und auf einem Detektor vor der Spitze nachgewiesen werden können. Da die Spitze mit einem Krümmungsradius von zehn Nanometern extrem scharf ist, verstärkt sich hier die Intensität des Laserlichts um ein Vielfaches (dieses Prinzip der Feldüberhöhung wird auch bei Blitzableitern genutzt), so dass vergleichsweise schwache Laserpulse ausreichen, um Elektronen aus dem Metall zu lösen.

Die für die Elektronenemission verwendeten Femtosekunden-Lichtpulse enthalten so wenige Schwingungen des Laserfeldes, dass die elektrische Feldstärke, die während eines Pulses auf die Spitze einwirkt, stark von der Phasenverschiebung der Trägerwelle relativ zum Pulsmaximum abhängt (siehe Abbildung 2).

In dem hier beschriebenen Experiment werden die Anzahl und die kinetische Energie der freigesetzten Elektronen in Abhängigkeit von dieser Phasendifferenz gemessen. Wie in Abb. 3 zu sehen ist, hat die Phasenverschiebung tatsächlich einen starken Einfluss auf die Struktur des Elektronenspektrums. Hier sind zwei Spektren abgebildet, deren Phasenverschiebung sich um 180 Grad unterscheidet. Zunächst fällt auf, dass die Phasenverschiebung steuert, wie viele Elektronen bei einer bestimmten Energie registriert werden. „Je höher die Energie der Elektronen ist, desto näher kommen wir der Situation, dass wir durch Änderung der Phasenverschiebung um 180 Grad den Strom komplett ein- oder ausschalten können“, erklärt Michael Krüger, neben Markus Schenk einer der beiden Doktoranden und Erstautoren.

Die Phasenverschiebung bestimmt auch, ob ausgeprägte Spitzen in den Spektren beobachtet werden oder nicht. Diese Maxima zeugen davon, dass Elektronen gemäß der Quantenmechanik auch den Charakter von Materiewellen besitzen. So können bei einer Phasenverschiebung von 180 Grad zu zwei verschiedenen Zeitpunkten während eines Pulses Elektronen mit hoher Energie ausgesandt werden. Die Interferenz der beiden Materiewellenpakete am Detektor führt zu der beobachteten Interferenzstruktur im Spektrum. Gibt es die Möglichkeit der Elektronenemission nur einmal, dann ist keine Interferenz möglich und die Maxima verschwinden. „Wir können damit die Dynamik der Elektronen mit Attosekundengenauigkeit erschließen. Dieser Bereich ist mit konventioneller Elektronik nicht zugänglich “, erklärt Markus Schenk.

Aus der Form der Spektren schließen die Wissenschaftler, dass das Laserfeld auch nach der Emission der Elektronen aus dem Metall noch einen starken Einfluss auf ihre Bewegung hat. Der flache Verlauf bei mittleren Energien deutet darauf hin, dass ausgelöste Elektronen vom Laserfeld in Richtung Spitze zurückgetrieben und an deren Oberfläche gestreut werden, bevor sie weiter in Richtung Detektor fliegen. „Das Experiment zeigt, dass die Rückstreuung der Elektronen an der Metallspitze ihre Fähigkeit zu interferieren nicht zerstört, d.h. kohärent erfolgt“, erklärt Markus Schenk. Ein einfaches Modell, das die Bewegung des Elektrons im elektrischen Feld des Lasers rein klassisch beschreibt, aber auch die Wellennatur der Elektronen berücksichtigt, reproduziert die beobachteten Spektren erstaunlich gut.

Erstmals ist es den Physikern damit gelungen, die Bewegung von Elektronen, die durch das Feld eines Femtosekunden-Lichtpulses aus einem Festkörper emittiert werden, gezielt zu lenken. Die dafür benötigte Intensität des Laserlichts ist weit geringer als bei vergleichbaren Experimenten mit Elektronen in atomaren Gasen. Die Forscher sehen in der neuen Methode zum einen ein wichtiges Werkzeug, um fundamentale Erkenntnisse über die Dynamik der Elektronen an Festkörperoberflächen zu gewinnen. So ist zum Beispiel nicht klar, ob die Rückstreuung der Elektronen an der Oberfläche als Ganzem oder an einem einzelnen Atom innerhalb oder auf der Oberfläche erfolgt. Zum andern hat das Verfahren aufgrund der niedrigen Laserintensitäten auch ein hohes Anwendungspotential. Mit der Kombination aus einer Metallspitze, einem Energiefilter und einem Elektronen-Vervielfacher lassen sich z.B. praktische und kompakte Geräte für die Phasenmessung und Phasenstabilisierung von Laserpulsen realisieren. Ebenfalls denkbar ist die Entwicklung von optischen Feldeffekt-Transistoren, bei denen ein elektrischer Strom durch das Lichtfeld mit Attosekundenpräzision ein- und ausgeschaltet werden kann. OLivia Meyer-Streng

Originalveröffentlichung:
Michael Krüger, Markus Schenk, and Peter Hommelhoff
Attosecond control of electrons emitted from a nanoscale metal tip
Nature, 7. Juli 2011
Kontakt:
Dr. Peter Hommelhoff
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 89 32905 265
E-Mail: peter.hommelhoff@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops