Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtwellenelektronik an scharfen Metallspitzen

07.07.2011
Wissenschaftler am Max-Planck-Institut für Quantenoptik steuern erstmals die Elektronenemission aus Metallspitzen mit Femtosekunden-Laserpulsen.

Die Steuerung von Elektronen durch intensive phasenstabile Lichtpulse von nur einigen Femtosekunden Dauer erlaubt es, physikalische Prozesse auf der Attosekundenskala aufzulösen. Die selbständige Forschungsgruppe Ultraschnelle Quantenoptik von Dr. Peter Hommelhoff (Max-Planck-Institut für Quantenoptik) hat diese Methode jetzt auf Festkörperoberflächen angewandt, genauer gesagt, auf extrem scharfe Metallspitzen (Nature, 7. Juli 2011).


Mit einem Laserpuls beleuchtete Metallspitze. Foto: Thorsten Naeser, MPQ


Typische zeitliche Struktur des elektrischen Feldes von Femtosekunden-Laserpulsen. Die maximalen Auslenkungen der Lichtschwingung (blau) hängt von ihrer Phase relativ zum Pulsmaximum (der Einhüllenden, grün) ab. Beim linken Puls beträgt diese Phasendifferenz 180 Grad, beim rechten Puls 0 Grad. Grafik: MPQ

Dabei konnten die Wissenschaftler zeigen, dass bereits vergleichsweise kleine Laserintensitäten ausreichen, um die Elektronenemission mit der Phase der Lichtschwingung stark zu beeinflussen und zu steuern. Die beobachtete Modulation des resultierenden Energiespektrums lässt sich – in Einklang mit numerischen Rechnungen – mit einer phasenabhängigen kohärenten Interferenz von Elektronenwellenpaketen deuten. Neben Anwendungen in der Grundlagenforschung ist die neue Technik auch von praktischem Interesse: Die experimentelle Anordnung stellt ein einfaches, miniaturisierbares und extrem empfindliches Gerät für die Phasenmessung von Laserpulsen dar und könnte zudem die Konstruktion von ultraschnellen optischen Transistoren ermöglichen.

Kernstück des Experiments ist eine Wolframspitze (Abb. 1), die mit kurzen Laserpulsen von nur einigen Femtosekunden Dauer bestrahlt wird (eine Femtosekunde entspricht einem Millionstel eines Milliardstels einer Sekunde, Abb. 2). Ist der Laserpuls intensiv genug, können die Elektronen in der Spitze so viel Energie aus dem Lichtfeld aufnehmen, dass sie aus dem Metall austreten und auf einem Detektor vor der Spitze nachgewiesen werden können. Da die Spitze mit einem Krümmungsradius von zehn Nanometern extrem scharf ist, verstärkt sich hier die Intensität des Laserlichts um ein Vielfaches (dieses Prinzip der Feldüberhöhung wird auch bei Blitzableitern genutzt), so dass vergleichsweise schwache Laserpulse ausreichen, um Elektronen aus dem Metall zu lösen.

Die für die Elektronenemission verwendeten Femtosekunden-Lichtpulse enthalten so wenige Schwingungen des Laserfeldes, dass die elektrische Feldstärke, die während eines Pulses auf die Spitze einwirkt, stark von der Phasenverschiebung der Trägerwelle relativ zum Pulsmaximum abhängt (siehe Abbildung 2).

In dem hier beschriebenen Experiment werden die Anzahl und die kinetische Energie der freigesetzten Elektronen in Abhängigkeit von dieser Phasendifferenz gemessen. Wie in Abb. 3 zu sehen ist, hat die Phasenverschiebung tatsächlich einen starken Einfluss auf die Struktur des Elektronenspektrums. Hier sind zwei Spektren abgebildet, deren Phasenverschiebung sich um 180 Grad unterscheidet. Zunächst fällt auf, dass die Phasenverschiebung steuert, wie viele Elektronen bei einer bestimmten Energie registriert werden. „Je höher die Energie der Elektronen ist, desto näher kommen wir der Situation, dass wir durch Änderung der Phasenverschiebung um 180 Grad den Strom komplett ein- oder ausschalten können“, erklärt Michael Krüger, neben Markus Schenk einer der beiden Doktoranden und Erstautoren.

Die Phasenverschiebung bestimmt auch, ob ausgeprägte Spitzen in den Spektren beobachtet werden oder nicht. Diese Maxima zeugen davon, dass Elektronen gemäß der Quantenmechanik auch den Charakter von Materiewellen besitzen. So können bei einer Phasenverschiebung von 180 Grad zu zwei verschiedenen Zeitpunkten während eines Pulses Elektronen mit hoher Energie ausgesandt werden. Die Interferenz der beiden Materiewellenpakete am Detektor führt zu der beobachteten Interferenzstruktur im Spektrum. Gibt es die Möglichkeit der Elektronenemission nur einmal, dann ist keine Interferenz möglich und die Maxima verschwinden. „Wir können damit die Dynamik der Elektronen mit Attosekundengenauigkeit erschließen. Dieser Bereich ist mit konventioneller Elektronik nicht zugänglich “, erklärt Markus Schenk.

Aus der Form der Spektren schließen die Wissenschaftler, dass das Laserfeld auch nach der Emission der Elektronen aus dem Metall noch einen starken Einfluss auf ihre Bewegung hat. Der flache Verlauf bei mittleren Energien deutet darauf hin, dass ausgelöste Elektronen vom Laserfeld in Richtung Spitze zurückgetrieben und an deren Oberfläche gestreut werden, bevor sie weiter in Richtung Detektor fliegen. „Das Experiment zeigt, dass die Rückstreuung der Elektronen an der Metallspitze ihre Fähigkeit zu interferieren nicht zerstört, d.h. kohärent erfolgt“, erklärt Markus Schenk. Ein einfaches Modell, das die Bewegung des Elektrons im elektrischen Feld des Lasers rein klassisch beschreibt, aber auch die Wellennatur der Elektronen berücksichtigt, reproduziert die beobachteten Spektren erstaunlich gut.

Erstmals ist es den Physikern damit gelungen, die Bewegung von Elektronen, die durch das Feld eines Femtosekunden-Lichtpulses aus einem Festkörper emittiert werden, gezielt zu lenken. Die dafür benötigte Intensität des Laserlichts ist weit geringer als bei vergleichbaren Experimenten mit Elektronen in atomaren Gasen. Die Forscher sehen in der neuen Methode zum einen ein wichtiges Werkzeug, um fundamentale Erkenntnisse über die Dynamik der Elektronen an Festkörperoberflächen zu gewinnen. So ist zum Beispiel nicht klar, ob die Rückstreuung der Elektronen an der Oberfläche als Ganzem oder an einem einzelnen Atom innerhalb oder auf der Oberfläche erfolgt. Zum andern hat das Verfahren aufgrund der niedrigen Laserintensitäten auch ein hohes Anwendungspotential. Mit der Kombination aus einer Metallspitze, einem Energiefilter und einem Elektronen-Vervielfacher lassen sich z.B. praktische und kompakte Geräte für die Phasenmessung und Phasenstabilisierung von Laserpulsen realisieren. Ebenfalls denkbar ist die Entwicklung von optischen Feldeffekt-Transistoren, bei denen ein elektrischer Strom durch das Lichtfeld mit Attosekundenpräzision ein- und ausgeschaltet werden kann. OLivia Meyer-Streng

Originalveröffentlichung:
Michael Krüger, Markus Schenk, and Peter Hommelhoff
Attosecond control of electrons emitted from a nanoscale metal tip
Nature, 7. Juli 2011
Kontakt:
Dr. Peter Hommelhoff
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 89 32905 265
E-Mail: peter.hommelhoff@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit