Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtwellenelektronik an scharfen Metallspitzen

07.07.2011
Wissenschaftler am Max-Planck-Institut für Quantenoptik steuern erstmals die Elektronenemission aus Metallspitzen mit Femtosekunden-Laserpulsen.

Die Steuerung von Elektronen durch intensive phasenstabile Lichtpulse von nur einigen Femtosekunden Dauer erlaubt es, physikalische Prozesse auf der Attosekundenskala aufzulösen. Die selbständige Forschungsgruppe Ultraschnelle Quantenoptik von Dr. Peter Hommelhoff (Max-Planck-Institut für Quantenoptik) hat diese Methode jetzt auf Festkörperoberflächen angewandt, genauer gesagt, auf extrem scharfe Metallspitzen (Nature, 7. Juli 2011).


Mit einem Laserpuls beleuchtete Metallspitze. Foto: Thorsten Naeser, MPQ


Typische zeitliche Struktur des elektrischen Feldes von Femtosekunden-Laserpulsen. Die maximalen Auslenkungen der Lichtschwingung (blau) hängt von ihrer Phase relativ zum Pulsmaximum (der Einhüllenden, grün) ab. Beim linken Puls beträgt diese Phasendifferenz 180 Grad, beim rechten Puls 0 Grad. Grafik: MPQ

Dabei konnten die Wissenschaftler zeigen, dass bereits vergleichsweise kleine Laserintensitäten ausreichen, um die Elektronenemission mit der Phase der Lichtschwingung stark zu beeinflussen und zu steuern. Die beobachtete Modulation des resultierenden Energiespektrums lässt sich – in Einklang mit numerischen Rechnungen – mit einer phasenabhängigen kohärenten Interferenz von Elektronenwellenpaketen deuten. Neben Anwendungen in der Grundlagenforschung ist die neue Technik auch von praktischem Interesse: Die experimentelle Anordnung stellt ein einfaches, miniaturisierbares und extrem empfindliches Gerät für die Phasenmessung von Laserpulsen dar und könnte zudem die Konstruktion von ultraschnellen optischen Transistoren ermöglichen.

Kernstück des Experiments ist eine Wolframspitze (Abb. 1), die mit kurzen Laserpulsen von nur einigen Femtosekunden Dauer bestrahlt wird (eine Femtosekunde entspricht einem Millionstel eines Milliardstels einer Sekunde, Abb. 2). Ist der Laserpuls intensiv genug, können die Elektronen in der Spitze so viel Energie aus dem Lichtfeld aufnehmen, dass sie aus dem Metall austreten und auf einem Detektor vor der Spitze nachgewiesen werden können. Da die Spitze mit einem Krümmungsradius von zehn Nanometern extrem scharf ist, verstärkt sich hier die Intensität des Laserlichts um ein Vielfaches (dieses Prinzip der Feldüberhöhung wird auch bei Blitzableitern genutzt), so dass vergleichsweise schwache Laserpulse ausreichen, um Elektronen aus dem Metall zu lösen.

Die für die Elektronenemission verwendeten Femtosekunden-Lichtpulse enthalten so wenige Schwingungen des Laserfeldes, dass die elektrische Feldstärke, die während eines Pulses auf die Spitze einwirkt, stark von der Phasenverschiebung der Trägerwelle relativ zum Pulsmaximum abhängt (siehe Abbildung 2).

In dem hier beschriebenen Experiment werden die Anzahl und die kinetische Energie der freigesetzten Elektronen in Abhängigkeit von dieser Phasendifferenz gemessen. Wie in Abb. 3 zu sehen ist, hat die Phasenverschiebung tatsächlich einen starken Einfluss auf die Struktur des Elektronenspektrums. Hier sind zwei Spektren abgebildet, deren Phasenverschiebung sich um 180 Grad unterscheidet. Zunächst fällt auf, dass die Phasenverschiebung steuert, wie viele Elektronen bei einer bestimmten Energie registriert werden. „Je höher die Energie der Elektronen ist, desto näher kommen wir der Situation, dass wir durch Änderung der Phasenverschiebung um 180 Grad den Strom komplett ein- oder ausschalten können“, erklärt Michael Krüger, neben Markus Schenk einer der beiden Doktoranden und Erstautoren.

Die Phasenverschiebung bestimmt auch, ob ausgeprägte Spitzen in den Spektren beobachtet werden oder nicht. Diese Maxima zeugen davon, dass Elektronen gemäß der Quantenmechanik auch den Charakter von Materiewellen besitzen. So können bei einer Phasenverschiebung von 180 Grad zu zwei verschiedenen Zeitpunkten während eines Pulses Elektronen mit hoher Energie ausgesandt werden. Die Interferenz der beiden Materiewellenpakete am Detektor führt zu der beobachteten Interferenzstruktur im Spektrum. Gibt es die Möglichkeit der Elektronenemission nur einmal, dann ist keine Interferenz möglich und die Maxima verschwinden. „Wir können damit die Dynamik der Elektronen mit Attosekundengenauigkeit erschließen. Dieser Bereich ist mit konventioneller Elektronik nicht zugänglich “, erklärt Markus Schenk.

Aus der Form der Spektren schließen die Wissenschaftler, dass das Laserfeld auch nach der Emission der Elektronen aus dem Metall noch einen starken Einfluss auf ihre Bewegung hat. Der flache Verlauf bei mittleren Energien deutet darauf hin, dass ausgelöste Elektronen vom Laserfeld in Richtung Spitze zurückgetrieben und an deren Oberfläche gestreut werden, bevor sie weiter in Richtung Detektor fliegen. „Das Experiment zeigt, dass die Rückstreuung der Elektronen an der Metallspitze ihre Fähigkeit zu interferieren nicht zerstört, d.h. kohärent erfolgt“, erklärt Markus Schenk. Ein einfaches Modell, das die Bewegung des Elektrons im elektrischen Feld des Lasers rein klassisch beschreibt, aber auch die Wellennatur der Elektronen berücksichtigt, reproduziert die beobachteten Spektren erstaunlich gut.

Erstmals ist es den Physikern damit gelungen, die Bewegung von Elektronen, die durch das Feld eines Femtosekunden-Lichtpulses aus einem Festkörper emittiert werden, gezielt zu lenken. Die dafür benötigte Intensität des Laserlichts ist weit geringer als bei vergleichbaren Experimenten mit Elektronen in atomaren Gasen. Die Forscher sehen in der neuen Methode zum einen ein wichtiges Werkzeug, um fundamentale Erkenntnisse über die Dynamik der Elektronen an Festkörperoberflächen zu gewinnen. So ist zum Beispiel nicht klar, ob die Rückstreuung der Elektronen an der Oberfläche als Ganzem oder an einem einzelnen Atom innerhalb oder auf der Oberfläche erfolgt. Zum andern hat das Verfahren aufgrund der niedrigen Laserintensitäten auch ein hohes Anwendungspotential. Mit der Kombination aus einer Metallspitze, einem Energiefilter und einem Elektronen-Vervielfacher lassen sich z.B. praktische und kompakte Geräte für die Phasenmessung und Phasenstabilisierung von Laserpulsen realisieren. Ebenfalls denkbar ist die Entwicklung von optischen Feldeffekt-Transistoren, bei denen ein elektrischer Strom durch das Lichtfeld mit Attosekundenpräzision ein- und ausgeschaltet werden kann. OLivia Meyer-Streng

Originalveröffentlichung:
Michael Krüger, Markus Schenk, and Peter Hommelhoff
Attosecond control of electrons emitted from a nanoscale metal tip
Nature, 7. Juli 2011
Kontakt:
Dr. Peter Hommelhoff
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 89 32905 265
E-Mail: peter.hommelhoff@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau