Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In der Lichtfalle: IPHT Jena optimiert Solarzellen

29.07.2011
Wissenschaftler des Institutes für Photonische Technologien (IPHT) stellen ein innovatives Herstellungsverfahren für Nanodrähte vor. Mit ihm kann eine neue effiziente Generation von Solarzellen realisiert werden.

Ende Juni beschloss der Deutsche Bundestag den Ausstieg aus der Kernenergie. Die Herausforderung liegt nun in einer Wende hin zu einem größeren Anteil erneuerbarer Energien. Die effiziente Nutzung von Wind- und Sonnenenergie erhält damit noch höhere Bedeutung. Wissenschaftler des IPHT haben zusammen mit Kollegen des Max-Planck Instituts für die Physik des Lichts (MPL) in Erlangen jetzt ein neues Herstellungskonzept für Solarzellen vorgestellt.


Photolumineszenz der Nanodrähte unter UV-Licht
Döring/IPHT


Nanodraht-Rasen unter dem Rasterelektronenmikroskop
Hoffmann/IPHT

Auf einer Siliziumscheibe werden durch einfache Chemie im Becherglas Nanodrähte erzeugt. Glänzt so ein Wafer normalerweise bläulich und reflektiert wie ein Spiegel, erscheint er nach dem Verfahren dunkel-matt wie Samt. Betrachtet man die Siliziumscheibe unter einer UV-Lampe, leuchten die hergestellten Nanostrukturen rot auf. „Hierin liegt der Schlüssel für zukünftige hocheffiziente und kostengünstige Solarzellen“, berichtet der Diplom-Physiker Björn Hoffmann. Zusammen mit seinen Kollegen aus der Forschungsabteilung Halbleiter-Nanostrukturen des IPHT, geleitet von Frau Dr. Silke Christiansen, arbeitet er an der Herstellung und Charakterisierung der Nanodrähte sowie ihrer Integration in anwendbare Solarzellen.

Der Durchmesser eines Drahtes entspricht etwa dem 10.000sten Teil der Dicke eines menschlichen Haares. Licht im Wellenlängenbereich von 300 bis 1100 nm wird zu 90 Prozent von solch einer Schicht aus Nanodrähten absorbiert. „Die dünnen Drähte sind ideale Lichtfallen. Einmal in ihnen gefangen, kann das Licht nicht wieder heraus“, erklärt Hoffmann. Der Herstellungsprozess ist sehr einfach, effektiv und kostengünstig. Er erfolgt in zwei Schritten. Als erstes werden aus einer Lösung Silber-Nanopartikel auf der Oberfläche des Wafers aus Silizium abgeschieden. Dann erfolgt das nasschemische Ätzen der Nanostrukturen mit einem Wasserstoffperoxid-Flusssäure-Gemisch. Die Silber-Nanopartikel sinken dabei in das Silizium. Es entstehen so unendlich viele Drähte, die den Wafer aufgrund der hohen Absorption des sichtbaren Lichts schwarz erscheinen lassen.

Die für eine Solarzelle notwendigen Kontakte und Isolationsschichten zur Ladungstrennung werden in weiteren Schritten auf die Nanodrähte aufgebracht. In einem geeigneten Aufbau aus diversen leitfähigen und isolierenden Schichten kann das eingefangene Licht in elektrische Energie umgewandelt werden. Die Gesamteffizienz so einer Nanodraht-Solarzelle liegt momentan bei 9,1 Prozent. Dieser Wert ist einer der weltweit höchsten, der mit Dünnschicht-Silizium erreicht wurde. Herkömmliche Solarzellen (Siliziumwaferzellen) die derzeit die Landschaft auf heimischen Dächern prägen, erreichen ein Wirkungsgrad von mehr als 18 Prozent. Allerdings erfordert die Herstellung solcher Waferzellen selbst einen hohen Energie- und Materialeinsatz. Hier sollen die Nanodraht-Solarzellen nach weiterer Entwicklung deutlich kostengünstiger sein.

Die Wissenschaftler wollen nun mit Hilfe von Industriepartnern ihr Konzept in einen industriellen Herstellungsprozess übertragen. Angedacht ist die Produktion zum Beispiel auf Glas oder Folien. Letzteres würde eine Herstellung ähnlich des Prozesses des Zeitungsdruckens ermöglichen. Darüberhinaus soll das Material weiter optimiert werden, so dass die Effizienz auf über 15 Prozent gesteigert werden kann.

Im open-access InTech Verlag erschien dieser Tage das Buch „Nanowires - Fundamental Research“. In einem Kapitel beschreibt die IPHT/MPL Forschungsgruppe ihre Ergebnisse und die Vorteile des Verfahrens gegenüber anderen Herstellungsverfahren. Das Buch soll zur Förderung dieser Technologie beitragen. Zeigt es doch, dass sie das Potential besitzt Herausforderungen wie die Energiewende erfolgreich anzugehen.

Darüberhinaus wurde das Team mit dem dritten Platz im Last-Minute Demonstrator Award des Excellence Clusters‚ Engineering of Advanced Materials der Friedrich-Alexander-Universität Erlangen-Nürnberg ausgezeichnet. In mehr als 90 Projekten arbeiten über 200 Wissenschaftlerinnen und Wissenschaftler. In acht Disziplinen entlang der Wertschöpfungskette vom Molekül bis zum Material tragen sie Ergebnisse zusammen und kooperieren dabei auch mit außeruniversitären Forschungseinrichtungen und ausgewählten Industriepartnern.

Link zum Buchkapitel:
http://www.intechopen.com/articles/show/title/wet-chemically-etched-silicon-nanowire-architectures-formation-and-properties
Ihr Ansprechpartner:
Dr. Vladimir Sivakov
Abteilung Halbleiter-Nanostrukturen
Telefon +49 (0) 3641 206-440
Telefax +49 (0) 3641 206-499
vladimir.sivakov@ipht-jena.de

Manuela Meuters | IPHT
Weitere Informationen:
http://www.ipht-jena.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie