Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In der Lichtfalle: IPHT Jena optimiert Solarzellen

29.07.2011
Wissenschaftler des Institutes für Photonische Technologien (IPHT) stellen ein innovatives Herstellungsverfahren für Nanodrähte vor. Mit ihm kann eine neue effiziente Generation von Solarzellen realisiert werden.

Ende Juni beschloss der Deutsche Bundestag den Ausstieg aus der Kernenergie. Die Herausforderung liegt nun in einer Wende hin zu einem größeren Anteil erneuerbarer Energien. Die effiziente Nutzung von Wind- und Sonnenenergie erhält damit noch höhere Bedeutung. Wissenschaftler des IPHT haben zusammen mit Kollegen des Max-Planck Instituts für die Physik des Lichts (MPL) in Erlangen jetzt ein neues Herstellungskonzept für Solarzellen vorgestellt.


Photolumineszenz der Nanodrähte unter UV-Licht
Döring/IPHT


Nanodraht-Rasen unter dem Rasterelektronenmikroskop
Hoffmann/IPHT

Auf einer Siliziumscheibe werden durch einfache Chemie im Becherglas Nanodrähte erzeugt. Glänzt so ein Wafer normalerweise bläulich und reflektiert wie ein Spiegel, erscheint er nach dem Verfahren dunkel-matt wie Samt. Betrachtet man die Siliziumscheibe unter einer UV-Lampe, leuchten die hergestellten Nanostrukturen rot auf. „Hierin liegt der Schlüssel für zukünftige hocheffiziente und kostengünstige Solarzellen“, berichtet der Diplom-Physiker Björn Hoffmann. Zusammen mit seinen Kollegen aus der Forschungsabteilung Halbleiter-Nanostrukturen des IPHT, geleitet von Frau Dr. Silke Christiansen, arbeitet er an der Herstellung und Charakterisierung der Nanodrähte sowie ihrer Integration in anwendbare Solarzellen.

Der Durchmesser eines Drahtes entspricht etwa dem 10.000sten Teil der Dicke eines menschlichen Haares. Licht im Wellenlängenbereich von 300 bis 1100 nm wird zu 90 Prozent von solch einer Schicht aus Nanodrähten absorbiert. „Die dünnen Drähte sind ideale Lichtfallen. Einmal in ihnen gefangen, kann das Licht nicht wieder heraus“, erklärt Hoffmann. Der Herstellungsprozess ist sehr einfach, effektiv und kostengünstig. Er erfolgt in zwei Schritten. Als erstes werden aus einer Lösung Silber-Nanopartikel auf der Oberfläche des Wafers aus Silizium abgeschieden. Dann erfolgt das nasschemische Ätzen der Nanostrukturen mit einem Wasserstoffperoxid-Flusssäure-Gemisch. Die Silber-Nanopartikel sinken dabei in das Silizium. Es entstehen so unendlich viele Drähte, die den Wafer aufgrund der hohen Absorption des sichtbaren Lichts schwarz erscheinen lassen.

Die für eine Solarzelle notwendigen Kontakte und Isolationsschichten zur Ladungstrennung werden in weiteren Schritten auf die Nanodrähte aufgebracht. In einem geeigneten Aufbau aus diversen leitfähigen und isolierenden Schichten kann das eingefangene Licht in elektrische Energie umgewandelt werden. Die Gesamteffizienz so einer Nanodraht-Solarzelle liegt momentan bei 9,1 Prozent. Dieser Wert ist einer der weltweit höchsten, der mit Dünnschicht-Silizium erreicht wurde. Herkömmliche Solarzellen (Siliziumwaferzellen) die derzeit die Landschaft auf heimischen Dächern prägen, erreichen ein Wirkungsgrad von mehr als 18 Prozent. Allerdings erfordert die Herstellung solcher Waferzellen selbst einen hohen Energie- und Materialeinsatz. Hier sollen die Nanodraht-Solarzellen nach weiterer Entwicklung deutlich kostengünstiger sein.

Die Wissenschaftler wollen nun mit Hilfe von Industriepartnern ihr Konzept in einen industriellen Herstellungsprozess übertragen. Angedacht ist die Produktion zum Beispiel auf Glas oder Folien. Letzteres würde eine Herstellung ähnlich des Prozesses des Zeitungsdruckens ermöglichen. Darüberhinaus soll das Material weiter optimiert werden, so dass die Effizienz auf über 15 Prozent gesteigert werden kann.

Im open-access InTech Verlag erschien dieser Tage das Buch „Nanowires - Fundamental Research“. In einem Kapitel beschreibt die IPHT/MPL Forschungsgruppe ihre Ergebnisse und die Vorteile des Verfahrens gegenüber anderen Herstellungsverfahren. Das Buch soll zur Förderung dieser Technologie beitragen. Zeigt es doch, dass sie das Potential besitzt Herausforderungen wie die Energiewende erfolgreich anzugehen.

Darüberhinaus wurde das Team mit dem dritten Platz im Last-Minute Demonstrator Award des Excellence Clusters‚ Engineering of Advanced Materials der Friedrich-Alexander-Universität Erlangen-Nürnberg ausgezeichnet. In mehr als 90 Projekten arbeiten über 200 Wissenschaftlerinnen und Wissenschaftler. In acht Disziplinen entlang der Wertschöpfungskette vom Molekül bis zum Material tragen sie Ergebnisse zusammen und kooperieren dabei auch mit außeruniversitären Forschungseinrichtungen und ausgewählten Industriepartnern.

Link zum Buchkapitel:
http://www.intechopen.com/articles/show/title/wet-chemically-etched-silicon-nanowire-architectures-formation-and-properties
Ihr Ansprechpartner:
Dr. Vladimir Sivakov
Abteilung Halbleiter-Nanostrukturen
Telefon +49 (0) 3641 206-440
Telefax +49 (0) 3641 206-499
vladimir.sivakov@ipht-jena.de

Manuela Meuters | IPHT
Weitere Informationen:
http://www.ipht-jena.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie