Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtblitze aus dem Spiegel

11.06.2012
Ein Team vom Labor für Attosekundenphysik am Max-Planck-Institut für Quantenoptik hat eine Alternative zur Attosekunden-Lichtblitzerzeugung weiterentwickelt.

Geraten Elektronen an einer Glasoberfläche unter den Einfluss hochintensiver Laserpulse, senden sie Lichtblitze aus, die nur Attosekunden lang sind. Eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde.


Attosekunden-Lichtblitze können unter Einfluss von sehr starken Laserpulsen auch an Spiegeloberflächen entstehen. Jeder auf den Spiegel auftreffende Laserpuls hinterlässt einen punktförmigen Abdruck auf dem Spiegel und erzeugt dabei Attosekunden-Lichtblitze. Foto: Thorsten Naeser

Im elektrischen Feld der Laserpulse beginnen die Elektronen an der Glasoberfläche zu schwingen. Dabei entstehen letztendlich ultrakurze Attosekunden-Lichtblitze. Dieses innovative System der Lichtblitzerzeugung hat nun ein Team vom Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ) in Garching verbessert.

Es könnte eine Alternative zur bisherigen Attosekunden-Lichtblitzerzeugung werden. Bis heute werden solche Blitze nämlich mit Hilfe von Elektronen in Edelgasen erzeugt. Gegenüber der herkömmlichen Methode bietet die Produktion von Attosekunden-Lichtblitzen an Spiegeloberflächen einige Vorteile, sind sich die Forscher sicher (Phys. Rev. Lett. 108, 235003 (2012).

Attosekunden-Lichtblitze verschaffen uns seit mehr als zehn Jahren Zugang zu einer noch weitgehend unbekannten Welt – dem Mikrokosmos. Mit ihrer Hilfe wurde es erstmals möglich, die rasend schnellen Bewegungen von Elektronen zu „fotografieren“. Erzeugt werden diese Lichtblitze in der Regel über Edelgasatome. Die Elektronen dieser Atome nehmen die Energie von Laserlicht auf und geben sie anschließend wieder ab in Form eines Attosekunden-Lichtblitzes. Dabei gilt: Je kürzer die Lichtblitze, desto schärfer werden die „Fotografien“ aus dem Mikrokosmos.

Es gibt aber auch noch andere Wege, solche Lichtblitze zu erzeugen. Einen davon hat nun ein Team vom Labor für Attosekundenphysik am Max-Planck-Institut für Quantenoptik weiterentwickelt. Die Forscher ließen einen hochintensiven Laserpuls von rund acht Femtosekunden Länge und einer Leistung von 16 Terawatt auf eine Glasfläche treffen, die damit zu einem so genannten „Relativistisch oszillierenden Spiegel“ wurde. Eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde. 16 Terawatt entsprechen in etwa der Leistung, die ca. 1000 Atomkraftwerke zusammen erbringen.
Der acht Femtosekunden lange Laserpuls bestand aus drei Lichtschwingungen und damit aus drei Schwingungen seines elektrischen Feldes. Sobald dieses Feld auf die Glasoberfläche traf, entstand dort ein relativistisches Plasma. Das heißt: Elektronen an der Oberfläche wurden bis fast auf Lichtgeschwindigkeit beschleunigt anschließend wieder abgebremst und zur Oberfläche zurückgeschickt, sobald das elektrische Feld seine Richtung änderte. Die Elektronen bildeten somit einen sich bewegenden Spiegel. Bei der Reflexion an diesem Spiegel wurde das gepulste Laserlicht umgewandelt von Nahem Infrarotem bis hin zum extrem ultravioletten (XUV, bis zu 17 Nanometer Wellenlänge) Bereich des Lichtspektrums. Dabei entstanden noch kürzere Lichtblitze mit Attosekunden-Dauer. Diese traten in Form von einzelnen oder einer Aneinanderreihung mehrerer Blitze (Pulszüge) auf, die die Forscher herausfiltern konnten. Der Vergleich mit theoretischen Berechnungen des Phänomens hat gezeigt, dass die Lichtblitze um rund 100 Attosekunden dauern.

Gegenüber der herkömmlichen Attosekunden-Lichtblitzproduktion verfügen die neuen Lichtblitze über eine größere Zahl von Photonen, sie sind also lichtintensiver als ihre Vorgänger. Diese erhöhte Intensität ermöglicht die Aufspaltung eines einzelnen Lichtblitzes in zwei Teile. Damit können die Wissenschaftler nun mit zwei Attosekunden-Lichtblitzen Elektronen im Mikrokosmos präziser beobachten als dies bisher mit der Kombination aus einem AS-Lichtblitz gepaart mit einem längeren Femtosekunden-Laserpuls möglich war.

Für die Ultrakurzzeit-Fotografie von Elektronen bedeutet das: Die Bilder aus dem Mikrokosmos könnten zukünftig einen größeren Detailreichtum besitzen.
[Thorsten Naeser]

Originalveröffentlichung:
P. Heissler, R. Hörlein, J. M. Mikhailova, L. Waldecker, P. Tzallas, A. Buck, K. Schmid, C. M. S. Sears, F. Krausz, L. Veisz, M. Zepf and G. D. Tsakiris
Few-cycle driven relativistically oscillating plasma mirrors - a source of intense, isolated attosecond pulses
Phys. Rev. Lett. 108, 235003 (2012)

Mehr Informationen erhalten Sie von:

Patrick Heissler
Max-Planck-Institut für Quantenoptik, Garching
Hans-Kopfermann-Str. 1
85748 Garching
Tel: +49 (0) 89 / 32905-624
E-Mail: patrick.heissler@mpq.mpg.de

Prof. Dr. Ferenc Krausz
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 (0) 89 / 32905-612
E-Mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0) 89 / 32905-213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de
http://www.attoworld.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten