Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtblitze aus dem Spiegel

11.06.2012
Ein Team vom Labor für Attosekundenphysik am Max-Planck-Institut für Quantenoptik hat eine Alternative zur Attosekunden-Lichtblitzerzeugung weiterentwickelt.

Geraten Elektronen an einer Glasoberfläche unter den Einfluss hochintensiver Laserpulse, senden sie Lichtblitze aus, die nur Attosekunden lang sind. Eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde.


Attosekunden-Lichtblitze können unter Einfluss von sehr starken Laserpulsen auch an Spiegeloberflächen entstehen. Jeder auf den Spiegel auftreffende Laserpuls hinterlässt einen punktförmigen Abdruck auf dem Spiegel und erzeugt dabei Attosekunden-Lichtblitze. Foto: Thorsten Naeser

Im elektrischen Feld der Laserpulse beginnen die Elektronen an der Glasoberfläche zu schwingen. Dabei entstehen letztendlich ultrakurze Attosekunden-Lichtblitze. Dieses innovative System der Lichtblitzerzeugung hat nun ein Team vom Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ) in Garching verbessert.

Es könnte eine Alternative zur bisherigen Attosekunden-Lichtblitzerzeugung werden. Bis heute werden solche Blitze nämlich mit Hilfe von Elektronen in Edelgasen erzeugt. Gegenüber der herkömmlichen Methode bietet die Produktion von Attosekunden-Lichtblitzen an Spiegeloberflächen einige Vorteile, sind sich die Forscher sicher (Phys. Rev. Lett. 108, 235003 (2012).

Attosekunden-Lichtblitze verschaffen uns seit mehr als zehn Jahren Zugang zu einer noch weitgehend unbekannten Welt – dem Mikrokosmos. Mit ihrer Hilfe wurde es erstmals möglich, die rasend schnellen Bewegungen von Elektronen zu „fotografieren“. Erzeugt werden diese Lichtblitze in der Regel über Edelgasatome. Die Elektronen dieser Atome nehmen die Energie von Laserlicht auf und geben sie anschließend wieder ab in Form eines Attosekunden-Lichtblitzes. Dabei gilt: Je kürzer die Lichtblitze, desto schärfer werden die „Fotografien“ aus dem Mikrokosmos.

Es gibt aber auch noch andere Wege, solche Lichtblitze zu erzeugen. Einen davon hat nun ein Team vom Labor für Attosekundenphysik am Max-Planck-Institut für Quantenoptik weiterentwickelt. Die Forscher ließen einen hochintensiven Laserpuls von rund acht Femtosekunden Länge und einer Leistung von 16 Terawatt auf eine Glasfläche treffen, die damit zu einem so genannten „Relativistisch oszillierenden Spiegel“ wurde. Eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde. 16 Terawatt entsprechen in etwa der Leistung, die ca. 1000 Atomkraftwerke zusammen erbringen.
Der acht Femtosekunden lange Laserpuls bestand aus drei Lichtschwingungen und damit aus drei Schwingungen seines elektrischen Feldes. Sobald dieses Feld auf die Glasoberfläche traf, entstand dort ein relativistisches Plasma. Das heißt: Elektronen an der Oberfläche wurden bis fast auf Lichtgeschwindigkeit beschleunigt anschließend wieder abgebremst und zur Oberfläche zurückgeschickt, sobald das elektrische Feld seine Richtung änderte. Die Elektronen bildeten somit einen sich bewegenden Spiegel. Bei der Reflexion an diesem Spiegel wurde das gepulste Laserlicht umgewandelt von Nahem Infrarotem bis hin zum extrem ultravioletten (XUV, bis zu 17 Nanometer Wellenlänge) Bereich des Lichtspektrums. Dabei entstanden noch kürzere Lichtblitze mit Attosekunden-Dauer. Diese traten in Form von einzelnen oder einer Aneinanderreihung mehrerer Blitze (Pulszüge) auf, die die Forscher herausfiltern konnten. Der Vergleich mit theoretischen Berechnungen des Phänomens hat gezeigt, dass die Lichtblitze um rund 100 Attosekunden dauern.

Gegenüber der herkömmlichen Attosekunden-Lichtblitzproduktion verfügen die neuen Lichtblitze über eine größere Zahl von Photonen, sie sind also lichtintensiver als ihre Vorgänger. Diese erhöhte Intensität ermöglicht die Aufspaltung eines einzelnen Lichtblitzes in zwei Teile. Damit können die Wissenschaftler nun mit zwei Attosekunden-Lichtblitzen Elektronen im Mikrokosmos präziser beobachten als dies bisher mit der Kombination aus einem AS-Lichtblitz gepaart mit einem längeren Femtosekunden-Laserpuls möglich war.

Für die Ultrakurzzeit-Fotografie von Elektronen bedeutet das: Die Bilder aus dem Mikrokosmos könnten zukünftig einen größeren Detailreichtum besitzen.
[Thorsten Naeser]

Originalveröffentlichung:
P. Heissler, R. Hörlein, J. M. Mikhailova, L. Waldecker, P. Tzallas, A. Buck, K. Schmid, C. M. S. Sears, F. Krausz, L. Veisz, M. Zepf and G. D. Tsakiris
Few-cycle driven relativistically oscillating plasma mirrors - a source of intense, isolated attosecond pulses
Phys. Rev. Lett. 108, 235003 (2012)

Mehr Informationen erhalten Sie von:

Patrick Heissler
Max-Planck-Institut für Quantenoptik, Garching
Hans-Kopfermann-Str. 1
85748 Garching
Tel: +49 (0) 89 / 32905-624
E-Mail: patrick.heissler@mpq.mpg.de

Prof. Dr. Ferenc Krausz
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 (0) 89 / 32905-612
E-Mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0) 89 / 32905-213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de
http://www.attoworld.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie