Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leichter durch den Weltraum: Teilchensimulationen für Ionenantriebe in der Raumfahrt

26.09.2008
Mit einem Kick-off-Treffen startet am 30. September das Drei-Jahres-Projekt "Teilchensimulationen für Ionenantriebe in der Raumfahrt" der Helmholtz-Hochschulnachwuchsgruppe im Teilinstitut Greifswald des Max-Planck-Instituts für Plasmaphysik (IPP).

Die mathematisch-physikalischen Werkzeuge dafür wurden ursprünglich für die Fusionsforschung entwickelt. Jetzt sollen sie daran angepasst werden, elektrische Triebwerke für die Raumfahrt rechnerisch zu beschreiben und zu optimieren. Beteiligt ist die Firma Thales in Ulm, gefördert wird das Projekt mit Mitteln des Bundesministeriums für Wirtschaft und Technologie durch die Raumfahrt-Agentur des Deutschen Zentrums für Luft- und Raumfahrt (DLR).

Ionenantriebe arbeiten, wie herkömmliche Raketentriebwerke, nach dem Rückstoßprinzip: Der Treibstoff wird jedoch nicht verbrannt, sondern elektrisch aufgeladen, d.h. ionisiert. Es entsteht ein Plasma aus elektrisch geladenen Teilchen, aus Elektronen und Ionen. Die Ionen werden in elektrischen Feldern beschleunigt. Es entsteht ein hochenergetischer Teilchenstrahl, dessen Rückstoß das Raumfahrzeug nach vorne treibt. Die benötigte elektrische Leistung liefern Solarzellen.

"Ionentriebwerke sind für Satellitenantriebe sehr interessant", erklärt Dr. Philip Willemsen vom DLR, "weil im Vergleich zu herkömmlichen chemischen Triebwerken vielfach höhere Austrittsgeschwindigkeiten der Strahlteilchen erreicht werden. Da so weniger Treibstoff gebraucht wird, kann die Startmasse des Satelliten kleiner sein. Das kann klare Kostenvorteile bringen und größere Flexibilität. Die ausgewiesene Kompetenz in der Plasmatheorie und die speziellen Vorarbeiten der Hochschulnachwuchsgruppe um Dr. Ralf Schneider machen das IPP zu einem idealen Partner, um die theoretische Beschreibung von Ionenantrieben voranzutreiben."

Die Entwicklung von Ionentriebwerken war bisher überwiegend Erfahrungssache. Um ihre Leistungsfähigkeit weiter zu verbessern, setzt man jetzt - angesichts der Fortschritte der Computermodelle und bei der Beschreibung des Plasmaverhaltens in den Antrieben - auch auf die rechnerische Modellierung. Dabei wird sich das Projekt auf so genannte HEMP-Triebwerke konzentrieren: In diesem "Hocheffizienz-Mehrstufen-Plasma-Triebwerk" der Firma Thales in Ulm wird der Treibstoff in einem magnetisch fokussierten Gleichfeldplasma ionisiert. Die für die Ionenbeschleunigung nötigen elektrischen Felder stellen sich über den magnetischen Einschluss im Plasma von selbst ein.

Beeinflussen lassen sich die Eigenschaften des Antriebsplasmas beispielsweise durch die Form des Entladungsgefäßes, die Lage von Gaseinlass und Elektroden oder die Topologie der Magnetfelder. Um das mikroskopische Plasmaverhalten in HEMP-Triebwerken beschreiben und damit Arbeits- und Leistungscharakteristika vorhersagen zu können, wollen die Wissenschaftler um Dr. Schneider nun Codes aus der Fusionsforschung verwenden. Sie wurden ursprünglich entwickelt, um die Wechselwirkung von Fusionsplasmen mit den umgebenden Gefäßwänden zu berechnen.

Plasmaphysikalisches Verständnis ist hier tatsächlich nötig: So ist bisher zum Beispiel der erhöhte Energieverlust der Elektronen im ionisierten Treibstoff nur unzureichend geklärt - ein großes Problem bei der Entwicklung effizienter Ionentriebwerke. Als mögliche Ursache kommen Fluktuationen in Frage, die durch Plasmainstabilitäten hervorgerufen werden, oder auch die Wechselwirkung des Plasmas mit den Wänden. In vielen Aspekten erinnert dies an Fragestellungen in Fusionsplasmen, nämlich den turbulenten anomalen Transport und die Plasma-Wand-Wechselwirkung.

Wie leistungsfähig die neuen Modellierungswerkzeuge sind, will man dann durch Vergleich mit Experimenten prüfen, die im Rahmen eines Unterauftrags bei Thales in Ulm ausgeführt werden. Ziel ist es, die Simulationssoftware so allgemein anzulegen, dass schließlich nicht nur die Physik des HEMP-Triebwerks beschrieben werden kann. Das Programmpaket soll sich in weiterführenden Vorhaben auch an andere Plasmatopologien anpassen lassen.

Isabella Milch | Max-Planck-Institut
Weitere Informationen:
http://www.ipp.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie