Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit einem Laserlineal auf der Jagd nach Planeten

31.05.2012
Laser-Frequenzkämme können jetzt als Kalibrationsquellen an astronomischen Spektrographen eingesetzt werden. Dies erleichtert die Suche nach extrasolaren Planeten, die einen Stern außerhalb unseres Sonnensystems umkreisen.

Eine verbesserte Kalibration könnte es außerdem ermöglichen, selbst sehr kleine Änderungen der Ausdehnungsgeschwindigkeit des Universums direkt zu messen.


Abb.1: Nutzung des Dopplereffektes bei der Suche nach Exo-Planeten Unter dem Einfluss eines Planeten (roter Ball) führt ein Stern (gelber Ball) periodische Rückstoßbewegungen aus. Bewegt er sich dabei in Richtung des Beobachters (oben), dann erscheinen die Lichtwellen gestaucht, d.h. die Frequenzen nach oben verschoben. Man spricht hier von „Blauverschiebung“. Bewegt sich der Stern dagegen vom Beobachter weg (siehe unten), dann werden die Wellen praktisch auseinander gezogen, was einer „Rotverschiebung“ zu niedrigeren Frequenzen entspricht. Grafik: Th. Udem, MPQ


Ein Frequenzkamm ist eine Lichtquelle mit einem kammartigen Spektrum. Der Frequenzabstand f_r zwischen benachbarten Linien ist immer exakt gleich und wird über eine Atomuhr stabil gehalten. Der Frequenzkamm wird fasergekoppelt zu dem Spektrograph (angedeutet durch ein Gitter) geleitet. Der Spektrograph zerlegt das Spektrum in seine Farben, d.h. seine Frequenzanteile. Anschließend wird das Licht mit einem CCD-Detektor aufgenommen und das kammartige Spektrum erscheint als Reihe von Punkten, wobei jeder Punkt genau einer Linie des Frequenzkamms entspricht. Dieses "Laserlineal" kann nun genutzt werden um den Spektrographen zu kalibrieren.

Laser-Frequenzkämme haben seit ihrer Erfindung vor circa 10 Jahren in vielen Laserlaboren Einzug gehalten. Ursprünglich für die Erkundung der Quantenwelt gedacht, sind sie heute dabei, sich einen festen Platz in der Astronomie und Astrophysik zu erobern. Ein Team von Wissenschaftlern aus der Abteilung Laserspektroskopie von Prof. Theodor W. Hänsch am Max-Planck-Institut für Quantenoptik (Garching) hat jetzt in Zusammenarbeit mit der Europäischen Südsternwarte (ESO), dem Instituto de Astrofísica de Canarias und der Firma Menlo Systems GmbH (Martinsried) die Frequenzkammtechnik so modifiziert, dass sie für die Kalibrierung astronomischer Spektrographen eingesetzt werden kann (Nature, 31. Mai 2012, DOI:10.1038/nature11092).

Testmessungen am High Accuracy Radial velocity Planet Searcher (HARPS) – einem Spektrographen an dem 3,6-Meter-Teleskop der ESO am La Silla Observatorium in Chile – ergaben, dass damit eine zehnmal höhere Genauigkeit als mit traditionellen Spektrallampen erreicht wird. Dies wird die Suche nach erdähnlichen Planeten außerhalb unseres Sonnensystems erheblich erleichtern. Damit soll letztendlich die Frage beantwortet werden, ob unser Sonnensystem der einzige Ort im Universum ist, an dem die Bedingungen für die Entstehung von Leben – wie wir es kennen – erfüllt sind.

Exo-Planeten lassen sich aber selbst mit den größten Teleskopen nicht direkt abilden. Eine der besten Nachweismethoden beruht auf der Messung der Dopplerverschiebungen im Spektrum des Muttersterns, der unter dem Einfluss des Planeten periodische Rückstoßbewegungen ausführt.

Das von Sternen zu uns gelangende Licht enthält zahlreiche Linien, die für die verschiedenen chemischen Elemente in seiner Gashülle charakteristisch sind. Bewegt sich der Stern auf den Beobachter zu oder von ihm weg, dann verschieben sich diese Linien zu leicht höheren oder niedrigeren Frequenzen. Die Messung dieser Dopplerverschiebung erlaubt daher Rückschlüsse auf die Bewegung der Sterne. Sie hat sich in den letzten Jahren als besonders erfolgreich bei der Suche nach Exo-Planeten erwiesen. Denn wenn diese ihren Mutterstern umkreisen, versetzen sie ihm einen kleinen Rückstoß, so dass sich seine Geschwindigkeit ändert – allerdings nur verhältnismäßig wenig. (Zum Vergleich: Die Sonne legt bei ihrem Weg um das galaktische Zentrum 220 Kilometer in der Sekunde zurück. Der Rückstoß, den die Erde auf die Sonne ausübt, beträgt dagegen nur rund neun Zentimeter in der Sekunde.)

Die daraus folgende Dopplerverschiebung im Sternenspektrum ist daher sehr klein und nur mit hochpräzisen Messinstrumenten nachzuweisen. Eine Größe zu messen heißt, sie mit einem kalibrierten Maßstab zu vergleichen. Die Genauigkeit bei der Bestimmung von Spektrallinien war bislang dadurch begrenzt, dass sich die Eigenschaften der Kalibrationsquellen selbst (z.B. eine Thorium-Spektrallampe) im Laufe der Zeit altersbedingt änderten. Die Ende der 90 Jahre entwickelten Frequenzkämme, für die Theodor W. Hänsch 2005 gemeinsam mit John Hall den Nobelpreis für Physik bekam, steigerten die Genauigkeit der Frequenzbestimmung von Licht erheblich. 2005 schlossen sich das MPQ und die ESO daher zu einer Kooperation zusammen, um diese Technik für die Kalibrierung von Spektrographen zu erproben. Nachdem erste Tests am VTT-Teleskop auf Teneriffa im Jahr 2008 sehr erfolgreich verlaufen waren, begannen die Wissenschaftler mit der Entwicklung eines Frequenzkamms für den HARPS-Spektrographen am La Silla Observatorium in Chile.

Ein Frequenzkamm ist ein Laser, der Licht mit einem Spektrum aus vielen äquidistanten Spektrallinien erzeugt. Jeder Spektrallinie wird mittels elektronischer Regelung die Genauigkeit einer angeschlossenen Atomuhr aufgeprägt. Ein Vergleich der Spektrallinien eines Sterns mit den Linien dieses zeitlich unveränderlichen „Laserlineals“ ermöglicht dann die Messung kleinster Variationen des Sternenlichts, hervorgerufen z.B. durch einen Planeten. Für den Einsatz in Spektrographen waren jedoch einige technische Herausforderungen zu meistern. Auch Präzisionsspektrographen wie HARPS haben eine begrenzte Auflösung, typischerweise von ca. 10hoch5. Der Linienabstand in dem zu entwickelnden Frequenzkamm muss daher mit etwa 10 GHz deutlich größer sein um aufgelöst zu werden. Außerdem arbeiten astronomische Spektrographen im sichtbaren Spektralbereich, da das Sternenlicht hier besonders strukturreich ist.

Als Basis für den Frequenzkamm wurde ein Faserlaser-System gewählt, um einen für Störungen unempfindlichen und wartungsfreien Betrieb zu gewährleisten. Faserlaser-Systeme emittieren jedoch Licht im infraroten Spektralbereich, mit Linienabständen von wenigen 100 MHz. Mit Hilfe einer Kaskade von mehreren spektralen Filtern sowie durch die Verwendung neuartiger Spezialfasern (gefertigt in der Gruppe von Philip Russell am Max-Planck-Institut für die Physik des Lichts, Erlangen) gelang es, einen Frequenzkamm mit dem benötigten Linienabstand und einem breiten Spektrum im sichtbaren Bereich zu erzeugen. Die Kalibrierung von HARPS mit diesem Frequenzkamm erlaubt es, Geschwindigkeitsänderungen bis hinunter zu 2,5 cm/s zu detektieren. Dies wurde bei Messungen im November 2010 und Januar 2011 erfolgreich getestet. Die Stabilität des Systems über längere Zeiträume wies das Physiker-Team nach, indem es einen Stern mit einem bereits bekannten Planeten mehrere Nächte lang beobachtete.

Beflügelt von diesem Erfolg verfolgen die Wissenschaftler jetzt ein noch ehrgeizigeres Ziel als den Nachweis von Exo-Planeten. Astronomische Beobachtungen haben eindeutig belegt, dass sich das Universum im Laufe der Zeit ausdehnt. Die Interpretation neuer Messungen der kosmischen Hintergrundstrahlung und die Beobachtung von Supernovae legt nahe, dass diese Ausdehnung immer schneller wird. Allerdings ist die Beschleunigung äußerst gering, sie liegt bei jährlich einem Zentimeter in der Sekunde. Solche extrem kleinen Geschwindigkeitsänderungen soll einmal das European Extremely Large Telescope (E-ELT) messen, das die ESO in etwa 10 Jahren in Chile aufzubauen plant. Durch den Einsatz hochpräziser Frequenzkämme kann der dafür konzipierte CODEX-Spektrograph mit einer Genauigkeit von 1 zu 300 Milliarden kalibriert werden – das ist, als würde man den Umfang der Erde auf einen halben Millimeter genau messen. Olivia Meyer-Streng

Originalveröffentlichung:
Tobias Wilken, Gaspare Lo Curto, Rafael A. Probst, Tilo Steinmetz, Antonio Manescau, Luca Pasquini, Jonay I. González Hernández, Rafael Rebolo, Theodor W. Hänsch, Thomas Udem & Ronald Holzwarth
A spectrograph for exoplanet observations calibrated at the centimetre-per-second level

Nature, 31. Mai 2012, DOI:10.1038/nature11092

Kontakt:
Dr. Ronald Holzwarth
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching bei München
Tel.: +49 (0) 89 / 32905 -262
E-Mail: ronald.holzwarth@mpq.mpg.de
Dr. Tobias Wilken
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching bei München
Tel.: +49 (0) 89 / 32905 -285
E-Mail: tobias.wilken@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie