Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserkicks für Atome

23.11.2010
Physikern gelingt es, den atomaren Spin im Takt von Billionstel Sekunden umzuschalten

Festplatten in unseren PCs speichern Daten, indem ein Schreib- und Lesekopf für jedes Bit einen kleinen Bereich auf ihnen magnetisiert. Beim Auslesen tastet der Magnetkopf die Magnetisierung ab. Ziel ist es, die magnetisierten Bereiche immer mehr zu verkleinern und die Schreib- und Auslesegeschwindigkeit zu erhöhen. Einer Forschergruppe unter maßgeblicher Beteiligung des Fritz-Haber-Instituts (FHI) der Max-Planck-Gesellschaft ist es jüngst gelungen, Atome in einem Festkörper eine Billion Mal pro Sekunde gezielt "umzuschalten." Als Schalter dient den Wissenschaftlern Licht, genauer gesagt eine Terahertz-Welle. Zwar liegt eine praktische Anwendung noch in weiter Ferne, doch für die Grundlagenforschung eröffnen sich damit neue Perspektiven (Nature Photonics, Advanced online publication, 21. Nov. 2010).


Ein schneller Schalter für atomare Kreisel: Die Atome des Nickeloxids (blaue Kugeln) lassen sich als winzige Stabmagneten betrachten, weil ihre Elektronen ein magnetisches Moment (blaue Pfeile) erzeugen. Physiker sagen: Die Atome besitzen einen Spin. In dem Experiment verkippt das Magnetfeld eines Terahertz-Impulses (rot) die Spinachse, so dass sie zu torkeln (präzedieren) beginnt. Bild: Fritz-Haber-Institut der MPG

Für ihr Experiment wählten Tobias Kampfrath vom Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin und seine Kollegen von den Universitäten Konstanz und Bonn einen Kristall aus Nickeloxid - einen Antiferromagneten. Die magnetischen Eigenschaften dieser Materialgattung verbergen sich in den Atomen des Kristallgitters. Man kann sich diese Atome wie winzige, schnell rotierende Kreisel vorstellen, in denen Elektronen den Kern umkreisen. Dabei erzeugen diese wie ein Elektromagnet ein Magnetfeld. Die Atome werden damit vereinfacht gesprochen zu winzigen Stabmagneten. Physiker sprechen vom Spin eines Atoms.

Antiferromagneten haben die Eigenschaft, dass benachbarte Atome entgegengesetzten Spin haben. Damit sind auch die Minimagnete abwechselnd gepolt, und ihre Felder heben sich gegenseitig auf: Ein Antiferromagnet ist nach außen hin unmagnetisch. In Ferromagneten wie Eisen sind alle Spins dagegen gleich ausgerichtet, weswegen ein solches Material ein äußeres Magnetfeld erzeugt.

Vom Antiferromagneten Nickeloxid wissen Physiker schon seit langem, dass die Spins anfangen, extrem schnell zu präzedieren, also schwingen, wenn man sie aus ihrer Gleichgewichtsrichtung auslenkt, nämlich eine Billion Mal pro Sekunde. Das bietet prinzipiell die Möglichkeit, die Rotations- oder Spinachsen mit hoher Frequenz zu verkippen. Doch dafür fehlte bislang der Schalter.

Den fanden Kampfrath und Kollegen nun in Form von Terahertz-Impulsen. Im Grunde handelt es sich dabei um langwellige Infrarotstrahlung mit Wellenlängen von einigen Zehntel Millimetern und Frequenzen bis zu einer Billion Hertz. Ein solcher Impuls ist - genauso wie Licht - nichts anderes als ein elektromagnetisches Feld, das mit dieser hohen Frequenz schwingt. Die Idee der Physiker war nun: Das magnetische Feld von solch einem Terahertz-Impuls könnte die atomaren Minimagnete auslenken. Die Achsen geraten in Schieflage, und die Atome taumeln oder präzedieren, ähnlich wie ein Brummkreisel, den man angeschubst hat.

"Bis dahin hatte man geglaubt, die Magnetfelder in der Terahertz-Strahlung wären zu schwach, um die Spins der fest im Kristallgitter sitzenden Atome nennenswert auszulenken", sagt Kampfrath. Doch die Forscher nutzten die neueste Lasertechnik zum Erzeugen intensiver Terahertz-Strahlung und bewiesen das Gegenteil. Sie schossen aus einer bestimmten Richtung einen Terahertz-Impuls auf den Kristall und registrierten sofort, dass die Atom-Spins verkippt wurden.

Ohne weiteren äußeren Einfluss kreiseln die Spins nach einiger Zeit wieder in ihre Ursprungslage zurück. Doch das konnten die Physiker verhindern. Da bekannt ist, dass der Kreisel für eine Umdrehung eine Billionstel Sekunde benötigt, stießen sie ihn mit einem zweiten Terahertz-Impuls exakt nach einer ganzen Zahl von Umdrehungen wieder an und konnten so die Präzession aufrecht erhalten. Wenn sie aber den zweiten Impuls nach einer halbzahligen Umdrehung losschickten (also etwa eineinhalb oder zweieinhalb Umdrehungen nach dem ersten Impuls), dann klappte der Spin sofort wieder zurück. Das ist etwa so, als würde man eine Schaukel genau im Takt oder im Gegentakt anstoßen.

"Auf diese Weise können wir den Spin der Atome ganz gezielt und kontrolliert innerhalb von Billionstel Sekunden hin- und herkippen lassen", sagt Alexander Sell von der Universität Konstanz: "Trotz der hohen Intensität der Terahertz-Pulse beeinflussen wir nur die Spins. Andere Freiheitsgrade des Festkörpers werden nicht angeregt."

Im Prinzip wäre auf diese Weise das Schreiben und Auslesen von Informationsbits möglich. Doch bevor an konkrete Anwendungen gedacht werden kann, müssen weitere Experimente folgen. "Uns fasziniert das erst einmal als reine Grundlagenforschung", sagt Kampfrath. Denn mit der neuen Technik öffnet sich den Forschern ein weites Feld, um das Verhalten von Festkörpern auf so extrem kurzer Zeitskala zu studieren.

Denkbar erscheint es zum Beispiel, dass sie damit etwas über die Funktionsweise von Hochtemperatur-Supraleitern lernen können, die ebenfalls antiferromagnetisch sind. Diese Materialien sind zwar seit mehr als zwanzig Jahren bekannt und werden in einigen Bereichen auch eingesetzt. Doch warum sie unterhalb einer bestimmten Temperatur verlustfrei Strom leiten, ist noch weitgehend im Dunkeln.

Originalveröffentlichung:

Tobias Kampfrath, Alexander Sell, Gregor Klatt, Alexej Pashkin, Sebastian Mährlein, Thomas Dekorsy, Martin Wolf, Manfred Fiebig, Alfred Leitenstorfer, Rupert Huber
Coherent terahertz control of antiferromagnetic spin waves
Nature Photonics, Advanced online publication, 21. November 2010(DOI:10.1038/NPHOTON.2010.259)

Weitere Informationen erhalten Sie von:

Tobias Kampfrath
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Tel.: +49 30 8385-3588
E-Mail: kampfrath@fhi-berlin.mpg.de
Rupert Huber
Fachbereich Physik, Universitäten von Konstanz und Regensburg
Tel.: +49 941 9432070
E-Mail: rupert.huber@physik.uni-regensburg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften