Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Künstliche Atome“ direkt elektronisch auslesen

23.02.2011
Bochumer Physiker bauen 0-dimensionale Systeme
Nature Communications: Quantenpunkte be- und entladen

Für die Informationsverarbeitung der Zukunft suchen Forscher nach Möglichkeiten, neben Strömen von Elektronen auch deren Drehung zu nutzen. In Kombination könnten diese Eigenschaften wesentlich mehr Informationen speichern als nur „null“ und „eins“. Da das bei einzelnen Atomen schwierig ist, bauen RUB-Physiker um Prof. Dr. Andreas Wieck „künstliche Atome“ in Festkörper ein.

Unter seiner Beteiligung ist es einem Forscherteam aus Duisburg-Essen, Hamburg und Bochum nun gelungen, Zustände solcher künstlichen Atome direkt elektronisch auszulesen – mit gängigen Schnittstellen zu klassischen Computern. Das ist ein großer Schritt hin zur Anwendbarkeit solcher Systeme. Sie berichten in Nature Communications.

Eine Million statt einzelne Atome

Im Prinzip ist die Nutzung des Spins von Elektronen an einzelnen Atomen möglich, aber die Kleinheit der Signale und die Schwierigkeit, einzelne Atome definiert zu halten, beschränkt diese Technik auf hochspezialisierte Labors. Es bedarf eines ultrahohen Vakuums und aufwändiger Lasertechnik. „Wesentlich eleganter ist es, atomähnliche Systeme in Festkörper einzubauen“, sagt Prof. Wieck. Hier hilft die Quantenmechanik: Für Standard-Elektronendichten in Halbleitern beträgt die Wellenlänge von Elektronen (und Löchern) einige 10 Nanometer (nm), was etwa einen Abstand von 100 Atomen bedeutet. Man braucht also nicht einzelne Atome zu isolieren oder einzubringen. Es genügt, Bereiche zu definieren, die in jeder Richtung etwa 100 Atome Ausdehnung haben, also etwa 1003 = eine Million Atome umfassen. „Aber selbst das ist nicht ganz einfach, denn die heutige Hochintegration beherrscht ‚erst‘ rund 50nm Auflösung“, erklärt Prof. Wieck.

Trick: Orangen auf Mandarinen stapeln

Hier hilft ein Trick, der mit dem Atomabstand im Kristallgitter zu tun hat: Elektronen halten sich lieber in Indium-Arsenid (InAs) auf als in Gallium-Arsenid (GaAs). Da Indium ein wesentlich größeres Atom als Gallium ist, muss man sich eine Schichtung einer InAs-Schicht auf GaAs etwa so vorstellen, wie wenn man Orangen auf Mandarinen schichtet: Die erste Orangen (InAs-) Schicht wird aufgelegt, indem die Orangen auf Mandarinen (GaAs-) Breite „gequetscht“ werden, was zu einer „verspannten“ Schicht führt. Auch die zweite Orangen (InAs-) Lage muss verspannt werden, aber wenn man mehrere solcher Lagen übereinander schichtet, „vergisst“ das Orangen-System seine Mandarinen-Unterlagen-Ordnung. Die Verspannung „relaxiert“, das heißt sie wirft Fehlstellen und Lücken und türmt die Orangen zu einzelnen Haufen auf. Solche InAs-Haufen – InAs-Quantenpunkte oder „QDs“ (nach der englischen Bezeichnung Quantum Dots) genannt – wachsen also selbstorganisiert. Sie sind einige 10nm breit und etwa 5nm hoch, und damit für den quantenmechanischen Ladungsträgereinschluss ideal geeignet. Es passt gerade eine Wellenlänge der Elektronen bzw. Elektronenlöcher hinein. Die QDs zwingen die Elektronen in quantisierte Energien, womit sie als „künstliche Atome“ für Informations-Verarbeitungs-Zwecke einsetzbar sind.

10 Millionen mal kleiner als ein Hamburger

Die Bochumer Forscher stellen schon seit einigen Jahren die homogensten QD-„Ensembles“ her: Alle erzeugten QDs haben praktisch die gleiche Größe und ähneln als unten abgeflachte Linse einem „Hamburger“-Oberteil, sind aber rund 10 Millionen mal kleiner. „In jeden QD eines ca. eine Million umfassenden QD-Ensembles füllen wir definiert einige wenige Elektronen ein, wobei wir mit den Leichtesten beginnen, Wasserstoff, Helium und Lithium“, erläutert Prof. Wieck. Bisher wurden die Energieniveaus, die diese Elektronen besetzen, nur mit optischen Methoden ausgelesen. „Das ist zwar sehr elegant, bedarf aber eines großen Messaufwands mit spezialisierten Lasern, Detektoren und Spektralapparaten“, so Wieck. In der aktuellen Arbeit beschritten die Forscher einen gänzlich anderen Weg: Sie präparierten die QDs auf einer leitenden Elektronenschicht und maßen nur den elektrischen Widerstand dieser Schicht, der sich mit der Elektronenbesetzung der QDs ändert. „Dadurch haben wir einen direkten, elektronischen Zugriff auf die besetzten Zustände in den QDs und können diese mit gängigen Interfaces zu klassischen Computern auslesen.“

Titelaufnahme

B. Marquardt, M. Geller, B. Baxevanis, D. Pfannkuche, A. D. Wieck, D. Reuter, and A. Lorke: Transport spectroscopy of non-equilibrium many-particle spin states in self-assembled quantum dots. In: Nature communications, 22.2.2011, doi: 10.1038/ncomms1205

Weitere Informationen

Prof. Dr. Andreas Wieck, Lehrstuhl für Angewandte Festkörperphysik der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-28786, E-Mail: andreas.wieck@rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt
18.01.2017 | Max-Planck-Institut für Kernphysik

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Geothermie: Den Sommer im Winter ernten

18.01.2017 | Energie und Elektrotechnik

Kompositmaterial für die Wasseraufbereitung

18.01.2017 | Biowissenschaften Chemie

Brain-Computer-Interface: Wenn der Computer uns intuitiv versteht

18.01.2017 | Informationstechnologie