Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Künstliche Atome“ direkt elektronisch auslesen

23.02.2011
Bochumer Physiker bauen 0-dimensionale Systeme
Nature Communications: Quantenpunkte be- und entladen

Für die Informationsverarbeitung der Zukunft suchen Forscher nach Möglichkeiten, neben Strömen von Elektronen auch deren Drehung zu nutzen. In Kombination könnten diese Eigenschaften wesentlich mehr Informationen speichern als nur „null“ und „eins“. Da das bei einzelnen Atomen schwierig ist, bauen RUB-Physiker um Prof. Dr. Andreas Wieck „künstliche Atome“ in Festkörper ein.

Unter seiner Beteiligung ist es einem Forscherteam aus Duisburg-Essen, Hamburg und Bochum nun gelungen, Zustände solcher künstlichen Atome direkt elektronisch auszulesen – mit gängigen Schnittstellen zu klassischen Computern. Das ist ein großer Schritt hin zur Anwendbarkeit solcher Systeme. Sie berichten in Nature Communications.

Eine Million statt einzelne Atome

Im Prinzip ist die Nutzung des Spins von Elektronen an einzelnen Atomen möglich, aber die Kleinheit der Signale und die Schwierigkeit, einzelne Atome definiert zu halten, beschränkt diese Technik auf hochspezialisierte Labors. Es bedarf eines ultrahohen Vakuums und aufwändiger Lasertechnik. „Wesentlich eleganter ist es, atomähnliche Systeme in Festkörper einzubauen“, sagt Prof. Wieck. Hier hilft die Quantenmechanik: Für Standard-Elektronendichten in Halbleitern beträgt die Wellenlänge von Elektronen (und Löchern) einige 10 Nanometer (nm), was etwa einen Abstand von 100 Atomen bedeutet. Man braucht also nicht einzelne Atome zu isolieren oder einzubringen. Es genügt, Bereiche zu definieren, die in jeder Richtung etwa 100 Atome Ausdehnung haben, also etwa 1003 = eine Million Atome umfassen. „Aber selbst das ist nicht ganz einfach, denn die heutige Hochintegration beherrscht ‚erst‘ rund 50nm Auflösung“, erklärt Prof. Wieck.

Trick: Orangen auf Mandarinen stapeln

Hier hilft ein Trick, der mit dem Atomabstand im Kristallgitter zu tun hat: Elektronen halten sich lieber in Indium-Arsenid (InAs) auf als in Gallium-Arsenid (GaAs). Da Indium ein wesentlich größeres Atom als Gallium ist, muss man sich eine Schichtung einer InAs-Schicht auf GaAs etwa so vorstellen, wie wenn man Orangen auf Mandarinen schichtet: Die erste Orangen (InAs-) Schicht wird aufgelegt, indem die Orangen auf Mandarinen (GaAs-) Breite „gequetscht“ werden, was zu einer „verspannten“ Schicht führt. Auch die zweite Orangen (InAs-) Lage muss verspannt werden, aber wenn man mehrere solcher Lagen übereinander schichtet, „vergisst“ das Orangen-System seine Mandarinen-Unterlagen-Ordnung. Die Verspannung „relaxiert“, das heißt sie wirft Fehlstellen und Lücken und türmt die Orangen zu einzelnen Haufen auf. Solche InAs-Haufen – InAs-Quantenpunkte oder „QDs“ (nach der englischen Bezeichnung Quantum Dots) genannt – wachsen also selbstorganisiert. Sie sind einige 10nm breit und etwa 5nm hoch, und damit für den quantenmechanischen Ladungsträgereinschluss ideal geeignet. Es passt gerade eine Wellenlänge der Elektronen bzw. Elektronenlöcher hinein. Die QDs zwingen die Elektronen in quantisierte Energien, womit sie als „künstliche Atome“ für Informations-Verarbeitungs-Zwecke einsetzbar sind.

10 Millionen mal kleiner als ein Hamburger

Die Bochumer Forscher stellen schon seit einigen Jahren die homogensten QD-„Ensembles“ her: Alle erzeugten QDs haben praktisch die gleiche Größe und ähneln als unten abgeflachte Linse einem „Hamburger“-Oberteil, sind aber rund 10 Millionen mal kleiner. „In jeden QD eines ca. eine Million umfassenden QD-Ensembles füllen wir definiert einige wenige Elektronen ein, wobei wir mit den Leichtesten beginnen, Wasserstoff, Helium und Lithium“, erläutert Prof. Wieck. Bisher wurden die Energieniveaus, die diese Elektronen besetzen, nur mit optischen Methoden ausgelesen. „Das ist zwar sehr elegant, bedarf aber eines großen Messaufwands mit spezialisierten Lasern, Detektoren und Spektralapparaten“, so Wieck. In der aktuellen Arbeit beschritten die Forscher einen gänzlich anderen Weg: Sie präparierten die QDs auf einer leitenden Elektronenschicht und maßen nur den elektrischen Widerstand dieser Schicht, der sich mit der Elektronenbesetzung der QDs ändert. „Dadurch haben wir einen direkten, elektronischen Zugriff auf die besetzten Zustände in den QDs und können diese mit gängigen Interfaces zu klassischen Computern auslesen.“

Titelaufnahme

B. Marquardt, M. Geller, B. Baxevanis, D. Pfannkuche, A. D. Wieck, D. Reuter, and A. Lorke: Transport spectroscopy of non-equilibrium many-particle spin states in self-assembled quantum dots. In: Nature communications, 22.2.2011, doi: 10.1038/ncomms1205

Weitere Informationen

Prof. Dr. Andreas Wieck, Lehrstuhl für Angewandte Festkörperphysik der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-28786, E-Mail: andreas.wieck@rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften