Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Künstliche Atome“ direkt elektronisch auslesen

23.02.2011
Bochumer Physiker bauen 0-dimensionale Systeme
Nature Communications: Quantenpunkte be- und entladen

Für die Informationsverarbeitung der Zukunft suchen Forscher nach Möglichkeiten, neben Strömen von Elektronen auch deren Drehung zu nutzen. In Kombination könnten diese Eigenschaften wesentlich mehr Informationen speichern als nur „null“ und „eins“. Da das bei einzelnen Atomen schwierig ist, bauen RUB-Physiker um Prof. Dr. Andreas Wieck „künstliche Atome“ in Festkörper ein.

Unter seiner Beteiligung ist es einem Forscherteam aus Duisburg-Essen, Hamburg und Bochum nun gelungen, Zustände solcher künstlichen Atome direkt elektronisch auszulesen – mit gängigen Schnittstellen zu klassischen Computern. Das ist ein großer Schritt hin zur Anwendbarkeit solcher Systeme. Sie berichten in Nature Communications.

Eine Million statt einzelne Atome

Im Prinzip ist die Nutzung des Spins von Elektronen an einzelnen Atomen möglich, aber die Kleinheit der Signale und die Schwierigkeit, einzelne Atome definiert zu halten, beschränkt diese Technik auf hochspezialisierte Labors. Es bedarf eines ultrahohen Vakuums und aufwändiger Lasertechnik. „Wesentlich eleganter ist es, atomähnliche Systeme in Festkörper einzubauen“, sagt Prof. Wieck. Hier hilft die Quantenmechanik: Für Standard-Elektronendichten in Halbleitern beträgt die Wellenlänge von Elektronen (und Löchern) einige 10 Nanometer (nm), was etwa einen Abstand von 100 Atomen bedeutet. Man braucht also nicht einzelne Atome zu isolieren oder einzubringen. Es genügt, Bereiche zu definieren, die in jeder Richtung etwa 100 Atome Ausdehnung haben, also etwa 1003 = eine Million Atome umfassen. „Aber selbst das ist nicht ganz einfach, denn die heutige Hochintegration beherrscht ‚erst‘ rund 50nm Auflösung“, erklärt Prof. Wieck.

Trick: Orangen auf Mandarinen stapeln

Hier hilft ein Trick, der mit dem Atomabstand im Kristallgitter zu tun hat: Elektronen halten sich lieber in Indium-Arsenid (InAs) auf als in Gallium-Arsenid (GaAs). Da Indium ein wesentlich größeres Atom als Gallium ist, muss man sich eine Schichtung einer InAs-Schicht auf GaAs etwa so vorstellen, wie wenn man Orangen auf Mandarinen schichtet: Die erste Orangen (InAs-) Schicht wird aufgelegt, indem die Orangen auf Mandarinen (GaAs-) Breite „gequetscht“ werden, was zu einer „verspannten“ Schicht führt. Auch die zweite Orangen (InAs-) Lage muss verspannt werden, aber wenn man mehrere solcher Lagen übereinander schichtet, „vergisst“ das Orangen-System seine Mandarinen-Unterlagen-Ordnung. Die Verspannung „relaxiert“, das heißt sie wirft Fehlstellen und Lücken und türmt die Orangen zu einzelnen Haufen auf. Solche InAs-Haufen – InAs-Quantenpunkte oder „QDs“ (nach der englischen Bezeichnung Quantum Dots) genannt – wachsen also selbstorganisiert. Sie sind einige 10nm breit und etwa 5nm hoch, und damit für den quantenmechanischen Ladungsträgereinschluss ideal geeignet. Es passt gerade eine Wellenlänge der Elektronen bzw. Elektronenlöcher hinein. Die QDs zwingen die Elektronen in quantisierte Energien, womit sie als „künstliche Atome“ für Informations-Verarbeitungs-Zwecke einsetzbar sind.

10 Millionen mal kleiner als ein Hamburger

Die Bochumer Forscher stellen schon seit einigen Jahren die homogensten QD-„Ensembles“ her: Alle erzeugten QDs haben praktisch die gleiche Größe und ähneln als unten abgeflachte Linse einem „Hamburger“-Oberteil, sind aber rund 10 Millionen mal kleiner. „In jeden QD eines ca. eine Million umfassenden QD-Ensembles füllen wir definiert einige wenige Elektronen ein, wobei wir mit den Leichtesten beginnen, Wasserstoff, Helium und Lithium“, erläutert Prof. Wieck. Bisher wurden die Energieniveaus, die diese Elektronen besetzen, nur mit optischen Methoden ausgelesen. „Das ist zwar sehr elegant, bedarf aber eines großen Messaufwands mit spezialisierten Lasern, Detektoren und Spektralapparaten“, so Wieck. In der aktuellen Arbeit beschritten die Forscher einen gänzlich anderen Weg: Sie präparierten die QDs auf einer leitenden Elektronenschicht und maßen nur den elektrischen Widerstand dieser Schicht, der sich mit der Elektronenbesetzung der QDs ändert. „Dadurch haben wir einen direkten, elektronischen Zugriff auf die besetzten Zustände in den QDs und können diese mit gängigen Interfaces zu klassischen Computern auslesen.“

Titelaufnahme

B. Marquardt, M. Geller, B. Baxevanis, D. Pfannkuche, A. D. Wieck, D. Reuter, and A. Lorke: Transport spectroscopy of non-equilibrium many-particle spin states in self-assembled quantum dots. In: Nature communications, 22.2.2011, doi: 10.1038/ncomms1205

Weitere Informationen

Prof. Dr. Andreas Wieck, Lehrstuhl für Angewandte Festkörperphysik der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-28786, E-Mail: andreas.wieck@rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten