Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Korkenzieher-Elektronen: Landau-Zustände im freien Raum

30.09.2014

In starken Magnetfeldern können Elektronen merkwürdige Zustände annehmen. Was sonst nur in Festkörpern vorkommt erzeugte man an der TU Wien nun direkt in einem korkenzieherförmigen Elektronenstrahl.

Was macht ein Elektron, wenn es in ein Magnetfeld gerät? Es ändert seine Richtung und kann dadurch beispielsweise in eine Kreis- oder Spiralbahn gezwungen werden. In der Quantenphysik spielt das eine große Rolle: Nur ganz bestimmte Kreisradien sind erlaubt, alle anderen Kreisbewegungen sind physikalisch unmöglich.


Eine speziell geformte Maske wandelt eine Elektronenwelle in Strahlen mit Drehimpuls um.

TU Wien


Unterschiedliche Strahlen mit unterschiedlichen Drehungen

TU Wien

Diese erlaubten Elektronenzustände bezeichnet man als „Landau-Zustände“. Einem Team der TU Wien gelang es nun mit Unterstützung einer Forschungsgruppe aus Japan, solche Landau-Zustände mit Hilfe eines Elektronenmikroskops im freien Raum herzustellen.

Nicht nur im Festkörper, sondern auch im freien Raum

Die Landau-Zustände wurden zwar schon in der Frühzeit der Quantentheorie Anfang der 1930erjahre mathematisch beschrieben, doch direkt beobachten konnte man sie bis heute nicht. Auf Landau-Zuständen beruht unter anderem der Quanten-Hall-Effekt, der für Hochpräzisions-Messungen eingesetzt wird und für dessen Entdeckung 1985 der Nobelpreis vergeben wurde.

„Normalerweise tritt die Landau-Quantisierung in Festkörpern auf, bei Elektronen, deren Bewegung man auf zwei Dimensionen beschränken kann“, sagt Prof. Peter Schattschneider vom Zentrum für Transmissions-Elektronenmikroskopie (USTEM) und Institut für Festkörperphysik der TU Wien.

Nun gelang es allerdings, die Landau-Zustände nicht bloß in einem Festkörper, sondern direkt im freien Raum herzustellen und sie dadurch sichtbar zu machen. Indem man einen Elektronenstrahl auf eine speziell gefertigte Gittermaske schießt, spaltet man ihn in mehrere Elektronenstrahlen auf, die dann eine Eigenrotation aufweisen können.

„Man muss sich das vorstellen wie einen Wirbelsturm, bei dem sich die Teilchen der Luft auch korkenzieherartig um die zentrale Achse bewegen“, erklärt Stefan Löffler vom USTEM an der TU Wien. „Wenn man nun den Durchmesser dieses Elektronenstrahls verändert, sodass er genau zu den quantenmechanisch erlaubten Radien der Landau-Zustände passt, dann hat man einen Landau-Zustand im freien Raum erzeugt.“

Ein Kreis ist ein Kreis ist ein Kreis

Doch ein passender Wirbelsturmstrahl alleine ermöglicht noch keine Beobachtung der Landau-Zustände. Bildet man ihn auf einer Ebene ab, bekommt man bloß einen Kreis zu sehen. „Ein Kreis, der sich dreht, ist in jeder Phase seiner Bewegung bloß ein Kreis. Auf diese Weise kann man die Rotationsdynamik nicht analysieren“, sagt Michael Stöger-Pollach (TU Wien). Allerdings gelang es dem Forschungsteam, mit einer extrem scharfen Klinge aus Silizium den Strahl entzweizuschneiden. Die eine Hälfte des Strahls wird entfernt, die andere Hälfte behält ihr Rotationsverhalten aber bei.

„Wir bekommen so einen rotierenden Halbkreis, den wir zu unterschiedlichen Zeitpunkten abbilden können. Dadurch lässt sich das Verhalten der Landau-Zustände nun nicht mehr bloß mathematisch beschreiben, sondern tatsächlich im Experiment beobachten“, sagt Thomas Schachinger, der die Messungen am TEM gemacht hat (TU Wien). So gelang es, die Drehfrequenzen der Zustände sehr genau zu messen.

Die Technik, Elektronenstrahlen mit Hilfe von speziellen Masken einen Drehimpuls zu verpassen, wurde erst vor wenigen Jahren von Peter Schattschneider und Jo Verbeeck (Antwerpen, Belgien) entwickelt. Damit steht ein mächtiges neues Instrument zur Untersuchung von Materialien auf mikroskopischer Skala zur Verfügung. „Wir hoffen, dass unsere Erkenntnisse das komplexe Zusammenspiel von Elektronen und Magnetfeldern weiter aufklären helfen und zu neuen technologischen Möglichkeiten und einem tieferen Verständnis von Festkörpereigenschaften führen.“, sagt Peter Schattschneider.

Rückfragehinweis:
Prof. Peter Schattschneider
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13722
peter.schattschneider@tuwien.ac.at

Dr. Michael Stöger-Pollach
Service-Einrichtung für Transmissions-Elektronenmikroskopie (USTEM)
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-45204
michael.stoeger-pollach@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Weitere Informationen:

http://www.nature.com/ncomms/2014/140808/ncomms5586/full/ncomms5586.html Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften