Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Korkenzieher-Elektronen: Landau-Zustände im freien Raum

30.09.2014

In starken Magnetfeldern können Elektronen merkwürdige Zustände annehmen. Was sonst nur in Festkörpern vorkommt erzeugte man an der TU Wien nun direkt in einem korkenzieherförmigen Elektronenstrahl.

Was macht ein Elektron, wenn es in ein Magnetfeld gerät? Es ändert seine Richtung und kann dadurch beispielsweise in eine Kreis- oder Spiralbahn gezwungen werden. In der Quantenphysik spielt das eine große Rolle: Nur ganz bestimmte Kreisradien sind erlaubt, alle anderen Kreisbewegungen sind physikalisch unmöglich.


Eine speziell geformte Maske wandelt eine Elektronenwelle in Strahlen mit Drehimpuls um.

TU Wien


Unterschiedliche Strahlen mit unterschiedlichen Drehungen

TU Wien

Diese erlaubten Elektronenzustände bezeichnet man als „Landau-Zustände“. Einem Team der TU Wien gelang es nun mit Unterstützung einer Forschungsgruppe aus Japan, solche Landau-Zustände mit Hilfe eines Elektronenmikroskops im freien Raum herzustellen.

Nicht nur im Festkörper, sondern auch im freien Raum

Die Landau-Zustände wurden zwar schon in der Frühzeit der Quantentheorie Anfang der 1930erjahre mathematisch beschrieben, doch direkt beobachten konnte man sie bis heute nicht. Auf Landau-Zuständen beruht unter anderem der Quanten-Hall-Effekt, der für Hochpräzisions-Messungen eingesetzt wird und für dessen Entdeckung 1985 der Nobelpreis vergeben wurde.

„Normalerweise tritt die Landau-Quantisierung in Festkörpern auf, bei Elektronen, deren Bewegung man auf zwei Dimensionen beschränken kann“, sagt Prof. Peter Schattschneider vom Zentrum für Transmissions-Elektronenmikroskopie (USTEM) und Institut für Festkörperphysik der TU Wien.

Nun gelang es allerdings, die Landau-Zustände nicht bloß in einem Festkörper, sondern direkt im freien Raum herzustellen und sie dadurch sichtbar zu machen. Indem man einen Elektronenstrahl auf eine speziell gefertigte Gittermaske schießt, spaltet man ihn in mehrere Elektronenstrahlen auf, die dann eine Eigenrotation aufweisen können.

„Man muss sich das vorstellen wie einen Wirbelsturm, bei dem sich die Teilchen der Luft auch korkenzieherartig um die zentrale Achse bewegen“, erklärt Stefan Löffler vom USTEM an der TU Wien. „Wenn man nun den Durchmesser dieses Elektronenstrahls verändert, sodass er genau zu den quantenmechanisch erlaubten Radien der Landau-Zustände passt, dann hat man einen Landau-Zustand im freien Raum erzeugt.“

Ein Kreis ist ein Kreis ist ein Kreis

Doch ein passender Wirbelsturmstrahl alleine ermöglicht noch keine Beobachtung der Landau-Zustände. Bildet man ihn auf einer Ebene ab, bekommt man bloß einen Kreis zu sehen. „Ein Kreis, der sich dreht, ist in jeder Phase seiner Bewegung bloß ein Kreis. Auf diese Weise kann man die Rotationsdynamik nicht analysieren“, sagt Michael Stöger-Pollach (TU Wien). Allerdings gelang es dem Forschungsteam, mit einer extrem scharfen Klinge aus Silizium den Strahl entzweizuschneiden. Die eine Hälfte des Strahls wird entfernt, die andere Hälfte behält ihr Rotationsverhalten aber bei.

„Wir bekommen so einen rotierenden Halbkreis, den wir zu unterschiedlichen Zeitpunkten abbilden können. Dadurch lässt sich das Verhalten der Landau-Zustände nun nicht mehr bloß mathematisch beschreiben, sondern tatsächlich im Experiment beobachten“, sagt Thomas Schachinger, der die Messungen am TEM gemacht hat (TU Wien). So gelang es, die Drehfrequenzen der Zustände sehr genau zu messen.

Die Technik, Elektronenstrahlen mit Hilfe von speziellen Masken einen Drehimpuls zu verpassen, wurde erst vor wenigen Jahren von Peter Schattschneider und Jo Verbeeck (Antwerpen, Belgien) entwickelt. Damit steht ein mächtiges neues Instrument zur Untersuchung von Materialien auf mikroskopischer Skala zur Verfügung. „Wir hoffen, dass unsere Erkenntnisse das komplexe Zusammenspiel von Elektronen und Magnetfeldern weiter aufklären helfen und zu neuen technologischen Möglichkeiten und einem tieferen Verständnis von Festkörpereigenschaften führen.“, sagt Peter Schattschneider.

Rückfragehinweis:
Prof. Peter Schattschneider
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13722
peter.schattschneider@tuwien.ac.at

Dr. Michael Stöger-Pollach
Service-Einrichtung für Transmissions-Elektronenmikroskopie (USTEM)
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-45204
michael.stoeger-pollach@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Weitere Informationen:

http://www.nature.com/ncomms/2014/140808/ncomms5586/full/ncomms5586.html Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE