Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Korkenzieher-Elektronen: Landau-Zustände im freien Raum

30.09.2014

In starken Magnetfeldern können Elektronen merkwürdige Zustände annehmen. Was sonst nur in Festkörpern vorkommt erzeugte man an der TU Wien nun direkt in einem korkenzieherförmigen Elektronenstrahl.

Was macht ein Elektron, wenn es in ein Magnetfeld gerät? Es ändert seine Richtung und kann dadurch beispielsweise in eine Kreis- oder Spiralbahn gezwungen werden. In der Quantenphysik spielt das eine große Rolle: Nur ganz bestimmte Kreisradien sind erlaubt, alle anderen Kreisbewegungen sind physikalisch unmöglich.


Eine speziell geformte Maske wandelt eine Elektronenwelle in Strahlen mit Drehimpuls um.

TU Wien


Unterschiedliche Strahlen mit unterschiedlichen Drehungen

TU Wien

Diese erlaubten Elektronenzustände bezeichnet man als „Landau-Zustände“. Einem Team der TU Wien gelang es nun mit Unterstützung einer Forschungsgruppe aus Japan, solche Landau-Zustände mit Hilfe eines Elektronenmikroskops im freien Raum herzustellen.

Nicht nur im Festkörper, sondern auch im freien Raum

Die Landau-Zustände wurden zwar schon in der Frühzeit der Quantentheorie Anfang der 1930erjahre mathematisch beschrieben, doch direkt beobachten konnte man sie bis heute nicht. Auf Landau-Zuständen beruht unter anderem der Quanten-Hall-Effekt, der für Hochpräzisions-Messungen eingesetzt wird und für dessen Entdeckung 1985 der Nobelpreis vergeben wurde.

„Normalerweise tritt die Landau-Quantisierung in Festkörpern auf, bei Elektronen, deren Bewegung man auf zwei Dimensionen beschränken kann“, sagt Prof. Peter Schattschneider vom Zentrum für Transmissions-Elektronenmikroskopie (USTEM) und Institut für Festkörperphysik der TU Wien.

Nun gelang es allerdings, die Landau-Zustände nicht bloß in einem Festkörper, sondern direkt im freien Raum herzustellen und sie dadurch sichtbar zu machen. Indem man einen Elektronenstrahl auf eine speziell gefertigte Gittermaske schießt, spaltet man ihn in mehrere Elektronenstrahlen auf, die dann eine Eigenrotation aufweisen können.

„Man muss sich das vorstellen wie einen Wirbelsturm, bei dem sich die Teilchen der Luft auch korkenzieherartig um die zentrale Achse bewegen“, erklärt Stefan Löffler vom USTEM an der TU Wien. „Wenn man nun den Durchmesser dieses Elektronenstrahls verändert, sodass er genau zu den quantenmechanisch erlaubten Radien der Landau-Zustände passt, dann hat man einen Landau-Zustand im freien Raum erzeugt.“

Ein Kreis ist ein Kreis ist ein Kreis

Doch ein passender Wirbelsturmstrahl alleine ermöglicht noch keine Beobachtung der Landau-Zustände. Bildet man ihn auf einer Ebene ab, bekommt man bloß einen Kreis zu sehen. „Ein Kreis, der sich dreht, ist in jeder Phase seiner Bewegung bloß ein Kreis. Auf diese Weise kann man die Rotationsdynamik nicht analysieren“, sagt Michael Stöger-Pollach (TU Wien). Allerdings gelang es dem Forschungsteam, mit einer extrem scharfen Klinge aus Silizium den Strahl entzweizuschneiden. Die eine Hälfte des Strahls wird entfernt, die andere Hälfte behält ihr Rotationsverhalten aber bei.

„Wir bekommen so einen rotierenden Halbkreis, den wir zu unterschiedlichen Zeitpunkten abbilden können. Dadurch lässt sich das Verhalten der Landau-Zustände nun nicht mehr bloß mathematisch beschreiben, sondern tatsächlich im Experiment beobachten“, sagt Thomas Schachinger, der die Messungen am TEM gemacht hat (TU Wien). So gelang es, die Drehfrequenzen der Zustände sehr genau zu messen.

Die Technik, Elektronenstrahlen mit Hilfe von speziellen Masken einen Drehimpuls zu verpassen, wurde erst vor wenigen Jahren von Peter Schattschneider und Jo Verbeeck (Antwerpen, Belgien) entwickelt. Damit steht ein mächtiges neues Instrument zur Untersuchung von Materialien auf mikroskopischer Skala zur Verfügung. „Wir hoffen, dass unsere Erkenntnisse das komplexe Zusammenspiel von Elektronen und Magnetfeldern weiter aufklären helfen und zu neuen technologischen Möglichkeiten und einem tieferen Verständnis von Festkörpereigenschaften führen.“, sagt Peter Schattschneider.

Rückfragehinweis:
Prof. Peter Schattschneider
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13722
peter.schattschneider@tuwien.ac.at

Dr. Michael Stöger-Pollach
Service-Einrichtung für Transmissions-Elektronenmikroskopie (USTEM)
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-45204
michael.stoeger-pollach@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Weitere Informationen:

http://www.nature.com/ncomms/2014/140808/ncomms5586/full/ncomms5586.html Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften