Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Knick im Knie

21.10.2011
Schon seit Jahren beschäftigen sich Astroteilchenphysiker mit der Frage, wie das „Knie“, ein Knick im Energiespektrum der kosmischen Strahlung, zustande kommt.

Für leichte Elemente wie Wasserstoff lieferte das Experiment KASCADE auf dem Gelände des Karlsruher Instituts für Technologie wichtige Hinweise. Mit der Erweiterung zu KASCADE-Grande konnten die Wissenschaftler nun Teilchen mit zehnmal höherer Energie und damit das komplette Knie vermessen: Das Knie setzt sich aus mehreren Knicks zusammen, mit höherer Energie verschwinden immer schwerere Elemente aus dem Spektrum der kosmischen Strahlung. Die Ergebnisse wurden soeben in der Zeitschrift „Physical Review Letters“ veröffentlicht.


Kosmische Strahlung, massive Teilchen aus dem Universum, lösen in der Erdat-mosphäre Schauer von Teilchen aus, die am Erdboden mit dem Experiment KASCADE-Grande nachgewiesen werden.
(Grafik: Tim Otto Roth und KIT)


Das "Knie" der kosmischen Strahlung, ein Knick im Energiespektrum, tritt für leichte und schwere Teilchen bei unterschiedlichen Energien auf.
(Grafik: KIT)

KASCADE-Grande ist ein Messfeld für kosmische Strahlung auf dem Gelände des Campus Nord des Karlsruher Instituts für Technologie. Auf einer Fläche von 700 mal 700 Quadratmetern stehen 37 Detektorstationen. Außerdem wurde das frühere KASCADE Experiment integriert. „KASCADE-Grande erweitert den Messbereich des KASCADE Experiments um einen Faktor 10“, stellt Dr. Andreas Haungs fest, der das KASCADE-Grande Projekt im KIT leitet. „Wir können nun Teilchenschauer messen, die von kosmischen Teilchen mit Energien bis 1018 Elektronenvolt erzeugt wurden.“ 1018 Elektronenvolt: das liegt um Faktor Hundert über den Energien, die die zurzeit größten Teilchenbeschleuniger auf der Erde erreichen.

Die Teilchenschauer entstehen dadurch, dass die primären Teilchen der kosmischen Strahlung auf die Atome der Erdatmosphäre auftreffen und aufgrund ihrer hohen Energie Sekundärteilchen erzeugen, die wiederum Teilchen erzeugen, die wiederum Teilchen erzeugen, usw. Dieser Schauer, diese Kaskade von Teilchen, trifft nach einigen Millisekunden auf den Erdboden auf und kann dort gemessen werden. „Die Primärteilchen, massive Atomkerne, die sehr unterschiedliche Energien haben, können aufgrund ihres geringen Flusses nicht direkt mit Ballon- oder Satellitenexperimenten gemessen werden“, erläutert Andreas Haungs. „Bei nur einem Teilchen pro Quadratmeter und Tag sind wir auf Beobachtungen am Boden angewiesen.“ Dabei können nicht nur die Energie und die Richtung des Primärteilchens bestimmt werden, sondern auch seine Masse.

Der Fluss der kosmischen Strahlung, also der Primärteilchen, die wohl überall im Universum zu finden sind, nimmt mit zunehmender Energie der Teilchen stark ab. Etwas oberhalb einer Energie von 1015 Elektronenvolt ändert sich die „Steilheit“ der Energieabnahme: Dadurch entsteht ein Knick im Spektrum, das „Knie“ der kosmischen Strahlung. Schon mit dem Experiment KASCADE wurde gezeigt, dass die kosmische Strahlung im Energiebereich bis 1017 Elektronenvolt nicht aus Photonen, sondern aus massiven Teilchen, Atomkernen, besteht. Die Teilchen fallen aus allen Richtungen gleich häufig ein – die Strahlung ist isotrop. Außerdem gab es Hinweise, dass der erste Bereich des „Knies“ durch das Wegfallen leichter Primärteilchen entsteht und sich mit der Masse der Primärteilchen zu höheren Energien verschiebt. Dies konnte nun durch die Erweiterung des Energiebereichs mit KASCADE-Grande vermessen werden: Der Knick für Eisenkerne liegt bei knapp 1017 Elektronenvolt.

„Aus den Ergebnissen von KASCADE-Grande können wir schließen, dass die primären Partikel der kosmischen Strahlung nur bis zu Energien um 1017 Elektronenvolt in unserer Milchstraße erzeugt und gespeichert werden können“, fasst Andreas Haungs die Auswirkungen auf unser astronomisches Weltbild zusammen. „Teilchen mit noch höherer Energie haben demnach ihren Ursprung außerhalb der Milchstraße.“ Diese noch energiereicheren Teilchen der kosmischen Strahlung werden vom Pierre Auger Observatorium in Argentinien vermessen, an dessen Aufbau und wissenschaftlicher Auswertung das KIT ebenfalls beteiligt ist.

Das KASCADE-Grande Projekt wird durch eine internationale Kollaboration mit Wissenschaftlern des KIT, sowie der Universitäten Michoacana (Mexiko), Turin (Italien), Lodz (Polen), Bukarest (Rumänien), Siegen und Wuppertal (Deutschland), Sao Paulo (Brasilien) und Nijmegen (Niederlande) betrieben. Nach 5 Jahren Messzeit seit der Erweiterung von KASCADE, sowie weiteren 3 Jahren Betrieb als Testeinrichtung für neuartige Detektoren wird KASCADE-Grande Ende dieses Jahres endgültig abgeschaltet.

Die ersten Analyseergebnisse des reichhaltigen Datensatzes wurden soeben von der wissenschaftlichen Zeitschrift „Physical Review Letters“ online publiziert und erscheinen heute auch in der gedruckten Ausgabe:
"Kneelike structure in the spectrum of the heavy component of cosmic rays observed with KASCADE-Grande", Physical Review Letters (Vol. 107, No. 17):
URL: http://link.aps.org/doi/10.1103/PhysRevLett.107.171104
DOI: 10.1103/PhysRevLett.107.171104
Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

nachricht Sind Zeitreisen physikalisch möglich?
26.06.2017 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblick ins geschlossene Enzym

26.06.2017 | Biowissenschaften Chemie

Laser – World of Photonics: Offene und flexible Montageplattform für optische Systeme

26.06.2017 | Messenachrichten

Biophotonische Innovationen auf der LASER World of PHOTONICS 2017

26.06.2017 | Messenachrichten