Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Knick im Knie

21.10.2011
Schon seit Jahren beschäftigen sich Astroteilchenphysiker mit der Frage, wie das „Knie“, ein Knick im Energiespektrum der kosmischen Strahlung, zustande kommt.

Für leichte Elemente wie Wasserstoff lieferte das Experiment KASCADE auf dem Gelände des Karlsruher Instituts für Technologie wichtige Hinweise. Mit der Erweiterung zu KASCADE-Grande konnten die Wissenschaftler nun Teilchen mit zehnmal höherer Energie und damit das komplette Knie vermessen: Das Knie setzt sich aus mehreren Knicks zusammen, mit höherer Energie verschwinden immer schwerere Elemente aus dem Spektrum der kosmischen Strahlung. Die Ergebnisse wurden soeben in der Zeitschrift „Physical Review Letters“ veröffentlicht.


Kosmische Strahlung, massive Teilchen aus dem Universum, lösen in der Erdat-mosphäre Schauer von Teilchen aus, die am Erdboden mit dem Experiment KASCADE-Grande nachgewiesen werden.
(Grafik: Tim Otto Roth und KIT)


Das "Knie" der kosmischen Strahlung, ein Knick im Energiespektrum, tritt für leichte und schwere Teilchen bei unterschiedlichen Energien auf.
(Grafik: KIT)

KASCADE-Grande ist ein Messfeld für kosmische Strahlung auf dem Gelände des Campus Nord des Karlsruher Instituts für Technologie. Auf einer Fläche von 700 mal 700 Quadratmetern stehen 37 Detektorstationen. Außerdem wurde das frühere KASCADE Experiment integriert. „KASCADE-Grande erweitert den Messbereich des KASCADE Experiments um einen Faktor 10“, stellt Dr. Andreas Haungs fest, der das KASCADE-Grande Projekt im KIT leitet. „Wir können nun Teilchenschauer messen, die von kosmischen Teilchen mit Energien bis 1018 Elektronenvolt erzeugt wurden.“ 1018 Elektronenvolt: das liegt um Faktor Hundert über den Energien, die die zurzeit größten Teilchenbeschleuniger auf der Erde erreichen.

Die Teilchenschauer entstehen dadurch, dass die primären Teilchen der kosmischen Strahlung auf die Atome der Erdatmosphäre auftreffen und aufgrund ihrer hohen Energie Sekundärteilchen erzeugen, die wiederum Teilchen erzeugen, die wiederum Teilchen erzeugen, usw. Dieser Schauer, diese Kaskade von Teilchen, trifft nach einigen Millisekunden auf den Erdboden auf und kann dort gemessen werden. „Die Primärteilchen, massive Atomkerne, die sehr unterschiedliche Energien haben, können aufgrund ihres geringen Flusses nicht direkt mit Ballon- oder Satellitenexperimenten gemessen werden“, erläutert Andreas Haungs. „Bei nur einem Teilchen pro Quadratmeter und Tag sind wir auf Beobachtungen am Boden angewiesen.“ Dabei können nicht nur die Energie und die Richtung des Primärteilchens bestimmt werden, sondern auch seine Masse.

Der Fluss der kosmischen Strahlung, also der Primärteilchen, die wohl überall im Universum zu finden sind, nimmt mit zunehmender Energie der Teilchen stark ab. Etwas oberhalb einer Energie von 1015 Elektronenvolt ändert sich die „Steilheit“ der Energieabnahme: Dadurch entsteht ein Knick im Spektrum, das „Knie“ der kosmischen Strahlung. Schon mit dem Experiment KASCADE wurde gezeigt, dass die kosmische Strahlung im Energiebereich bis 1017 Elektronenvolt nicht aus Photonen, sondern aus massiven Teilchen, Atomkernen, besteht. Die Teilchen fallen aus allen Richtungen gleich häufig ein – die Strahlung ist isotrop. Außerdem gab es Hinweise, dass der erste Bereich des „Knies“ durch das Wegfallen leichter Primärteilchen entsteht und sich mit der Masse der Primärteilchen zu höheren Energien verschiebt. Dies konnte nun durch die Erweiterung des Energiebereichs mit KASCADE-Grande vermessen werden: Der Knick für Eisenkerne liegt bei knapp 1017 Elektronenvolt.

„Aus den Ergebnissen von KASCADE-Grande können wir schließen, dass die primären Partikel der kosmischen Strahlung nur bis zu Energien um 1017 Elektronenvolt in unserer Milchstraße erzeugt und gespeichert werden können“, fasst Andreas Haungs die Auswirkungen auf unser astronomisches Weltbild zusammen. „Teilchen mit noch höherer Energie haben demnach ihren Ursprung außerhalb der Milchstraße.“ Diese noch energiereicheren Teilchen der kosmischen Strahlung werden vom Pierre Auger Observatorium in Argentinien vermessen, an dessen Aufbau und wissenschaftlicher Auswertung das KIT ebenfalls beteiligt ist.

Das KASCADE-Grande Projekt wird durch eine internationale Kollaboration mit Wissenschaftlern des KIT, sowie der Universitäten Michoacana (Mexiko), Turin (Italien), Lodz (Polen), Bukarest (Rumänien), Siegen und Wuppertal (Deutschland), Sao Paulo (Brasilien) und Nijmegen (Niederlande) betrieben. Nach 5 Jahren Messzeit seit der Erweiterung von KASCADE, sowie weiteren 3 Jahren Betrieb als Testeinrichtung für neuartige Detektoren wird KASCADE-Grande Ende dieses Jahres endgültig abgeschaltet.

Die ersten Analyseergebnisse des reichhaltigen Datensatzes wurden soeben von der wissenschaftlichen Zeitschrift „Physical Review Letters“ online publiziert und erscheinen heute auch in der gedruckten Ausgabe:
"Kneelike structure in the spectrum of the heavy component of cosmic rays observed with KASCADE-Grande", Physical Review Letters (Vol. 107, No. 17):
URL: http://link.aps.org/doi/10.1103/PhysRevLett.107.171104
DOI: 10.1103/PhysRevLett.107.171104
Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenverschränkung auf den Kopf gestellt
22.05.2018 | Universität Innsbruck

nachricht Kosmische Ravioli und Spätzle
22.05.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Kosmische Ravioli und Spätzle

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

22.05.2018 | Biowissenschaften Chemie

Mikroskopie der Zukunft

22.05.2018 | Medizintechnik

Designerzellen: Künstliches Enzym kann Genschalter betätigen

22.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics