Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der kleinste Mikrolaser der Welt

19.03.2010
Physiker der ETH Zürich haben einen neuartigen Laser entwickelt, der die Grenzen des bisher Machbaren deutlich sprengt: Er ist der mit Abstand kleinste elektrisch gepumpte Laser der Welt und könnte eines Tages die Chiptechnologie revolutionieren. Die Forscher stellen ihre Entwicklung in der aktuellen Ausgabe des Fachmagazins "Science" vor.

Von der Idee bis zur erfolgreichen Umsetzung dauerte es gut anderthalb Jahre. Eine Zeit, in der Christoph Walther, Doktorand in der Gruppe für Quantenoptoelektronik der ETH Zürich, Tage und Nächte im FIRST-Lab verbrachte. Denn das moderne Reinraumzentrum der ETH Zürich bot ihm ideale Bedingungen, um einen neuen Rekord in der Lasertechnologie aufzustellen: Gemeinsam mit vier Kollegen entwickelte der Physiker den bisher kleinsten elektrisch gepumpten Laser der Welt.


Kernstück des neuen Mikrolasers ist der elektrische Resonator, bestehend aus zwei halbkreisförmigen Kondensatoren, die durch eine Spule verbunden sind (hier eine Rasterelektronen-Mikroskop-Aufnahme). Die Farbintensität repräsentiert die Stärke des elektrischen Feldes; die Farbe selbst, die jeweilige Polarität. ETH Zürich

Viel kleiner als die Wellenlänge

Er ist 30 Mikrometer (das sind 30 Millionstel Meter) lang, acht Mikrometer hoch und hat eine Wellenlänge von 200 Mikrometern. Damit ist der Laser bedeutend kleiner als die Wellenlänge des von ihm emittierten Lichts. Normalerweise können Laser nicht kleiner sein als ihre Wellenlänge. Der Grund: In einem herkömmlichen Laser versetzen Lichtwellen den optischen Resonator in Schwingung - so wie akustische Wellen den Resonanzkörper einer Gitarre.

Dabei "wandern" die Lichtwellen - vereinfacht ausgedrückt - zwischen zwei Spiegeln hin und her. Und dieses Prinzip funktioniert nur, wenn die Spiegel grösser als die jeweilige Wellenlänge des Lasers sind. Daher sind normale Laser in ihrer Grösse limitiert. Zwar haben schon andere Forscher im Grenzbereich experimentiert: "Aber wir sind deutlich unter das bisher bekannte Limit gegangen, indem wir ein völlig neues Laserkonzept entwickelt haben", sagt Christoph Walther.

Von der Elektronik inspiriert

Bei der Entwicklung ihres Laserkonzepts haben sich Christoph Walther und einige Teamkollegen um Jérôme Faist, Professor und Leiter des Instituts für Quantenelektronik der ETH Zürich, von der Elektronik inspirieren lassen. Sie verwendeten keinen optischen Resonator, wie sonst üblich, sondern einen elektrischen Schwingkreis, bestehend aus einer Spule und zwei Kondensatoren. Darin wird das Licht quasi "eingefangen" und an Ort und Stelle mithilfe eines optischen Verstärkers zu sich selbst erhaltenden elektromagnetischen Schwin-gungen angeregt.

Daher ist die Grösse des Resonators nicht mehr durch die Wellenlänge des Lichts limitiert, sondern kann im Prinzip beliebig verkleinert werden. Diese Perspektive macht die Mikrolaser vor allem für Chiphersteller interessant - als optische Variante zu den Transistoren. "Wenn wir es schaffen, uns mit den Mikrolasern grössenmässig den Transistoren anzunähern, liessen sich damit eines Tages elektrooptische Chips mit einer sehr hohen Dichte an elektronischen und optischen Komponenten bauen", so Christoph Walther. Diese könnten den Datenaustausch auf Mikroprozessoren eines Tages erheblich beschleunigen.

Claudia Naegeli | ETH Zürich
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau