Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das kleinste Elektromobil der Welt – auf der Titelseite von „Nature“

10.11.2011
Kleiner geht’s nicht mehr: Das emissionsfreie, geräuschlose Allradfahrzeug, das Empa-Forscher gemeinsam mit niederländischen Kollegen entwickelt haben, ist Leichtbau im Extremen; das Nano-Auto besteht lediglich aus einem einzigen Molekül und fährt auf vier elektrisch angetriebenen Rädern nahezu geradlinig über eine Kupferoberfläche. Bewundern lässt sich der «Prototyp» auf dem Cover der neuesten Ausgabe des Wissenschaftsmagazins «Nature».

Um mechanische Arbeit zu verrichten, greifen wir meist auf Motoren zurück. Mit diesen wandeln wir chemische, thermische oder elektrische Energie in Bewegungsenergie um, etwa um Waren von A nach B zu transportieren. Die Natur macht es gleich; in Zellen verrichten so genannte Motorproteine – zum Beispiel Kinesin und das Muskelprotein Aktin – diese Aufgabe. Meist gleiten sie an anderen Proteinen entlang, ähnlich wie ein Zug auf Schienen, und «verbrennen» dabei ATP (Adenosintriphosphat), sozusagen das chemische Benzin der belebten Natur.


Das 4 x 2 Nanometer kleine Molekül-Auto fährt auf seinen elektrisch angetriebe/Enen Rädern über eine Kupferoberfläche.


«Nature»-Titelblatt der Ausgabe vom 10. November 2011 mit dem wohl «kleinsten Elektromobil der Welt» Nature

Ziel vieler Chemiker ist es, mit Hilfe ähnlicher Prinzipien und Konzepte molekulare Transportmaschinen zu entwerfen, die dann auf der Nanoskala bestimmte Arbeiten verrichten könnten. Wissenschaftlern der Universität Groningen und der Empa ist nun «ein entscheidender Schritt auf dem Weg zu künstlichen nanoskaligen Transportsystemen» gelungen, wie das Wissenschaftsmagazins «Nature» in seiner neusten Ausgabe schreibt. Sie haben ein Molekül aus vier rotierenden Motoreinheiten – sprich: Räder – synthetisiert, das kontrolliert geradeaus fahren kann. «Dabei braucht unser Auto weder Schienen noch Benzin; es fährt mit Strom. Es dürfte das kleinste Elektromobil der Welt sein – und dann erst noch mit Allradantrieb», sagt Empa-Forscher Karl-Heinz Ernst.

Reichweite pro Tankfüllung: noch verbesserungsfähig
Der Nachteil: Das circa 4 x 2 Nanometer kleine Auto – rund eine Milliarde Mal kleiner als ein VW Golf – muss nach jeder halben Radumdrehung erneut mit Strom betankt werden – über die Spitze eines Rastertunnelmikroskops (STM, engl. für Scanning Tunneling Microscope). Ausserdem können sich die Räder aufgrund ihres molekularen Designs nur in eine Richtung drehen. «Es gibt keinen Rückwärtsgang», so Ernst lakonisch, der auch Professor an der Universität Zürich ist.

Der Antrieb des komplexen organischen Moleküls funktioniert gemäss «Bauplan» folgendermassen: Nachdem Ernsts Kollege Manfred Parschau es auf eine Kupferoberfläche sublimiert und die STM-Spitze in gebührendem Abstand darüber positioniert hatte, legte er eine Spannung von mindestens 500 Millivolt an. Nun sollten Elektronen durch das Molekül «tunneln» und dadurch reversible strukturelle Veränderungen in jeder der vier Motoreinheiten auslösen. In einem ersten Schritt findet eine cis-trans-Isomerisierung an einer Doppelbindung statt, eine Art Umlagerung – allerdings in eine räumlich extrem ungünstige Position, in der sich grosse Seitengruppen gegenseitig den Raum streitig machen. Als Folge davon klappen die beiden Seitengruppen aneinander vorbei und landen wieder im energetisch günstigeren Ausgangszustand – das Schaufelrad hat eine halbe Drehung absolviert. Drehen sich alle vier Räder simultan, sollte das Auto vorwärts fahren. So wollte es zumindest die Theorie aufgrund der Molekülstruktur.

Fahren oder nicht – eine Frage der Orientierung
Und genau das beobachteten Ernst und Parschau: Nach zehn STM-Anregungen hatte sich das Molekül um sechs Nanometer nach vorne bewegt – auf einer mehr oder weniger geraden Linie. «Die Abweichungen von der vorhergesagten Trajektorie kommen daher, dass es nicht ganz trivial ist, alle vier Motoreinheiten zeitgleich anzuregen», erklärt «Testfahrer» Ernst.

Dass das Molekül sich tatsächlich so verhält wie vorhergesagt, zeigte ein weiteres Experiment. Um die zentrale Achse, eine C-C-Einfachbindung – das Chassis des Autos sozusagen –, kann ein Teil des Moleküls frei rotieren. Es kann also auf der Kupferoberfläche in zwei verschiedenen Orientierungen «landen»: in einer richtigen, in der alle vier Räder sich in die gleiche Richtung drehen, und in einer falschen, in der die Räder der Hinterachse sich nach vorne, die vorderen aber nach hinten drehen – das Auto bleibt trotz Anregung stehen. Auch dies konnten Ernst und Parschau mit dem STM klar verfolgen.

Ein erstes Ziel hat das niederländisch-schweizerische Team also erreicht, ein «proof of concept» nämlich, dass einzelne Moleküle externe elektrische Energie aufnehmen und in eine gezielte Bewegung umwandeln können. Als nächstes planen Ernst und Co., Moleküle zu entwickeln, die sich mit Licht antreiben lassen, etwa in Form eines UV-Lasers.

Literaturhinweis
Electrically driven directional motion of a four-wheeled molecule on a metal surface, T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Macia, N. Katsonis, S.R. Harutyunyan, K.-H. Ernst, B.L. Feringa,

Nature 479 (2011), doi: 10.1038/nature10587

Rémy Nideröst | EMPA
Weitere Informationen:
http://www.empa.ch/plugin/template/empa/3/114116/---/l=1

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie