Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Katalysatoren mögen’s heiß

08.10.2012
An der TU Wien konnte nun geklärt werden, wovon die nötige Betriebstemperatur von Auto-Katalysatoren abhängt.
Auto-Abgaskatalysatoren arbeiten schlecht, solange sie noch nicht aufgewärmt sind. Winzige Metallpartikel in einem Abgaskatalysator brauchen eine Mindesttemperatur, um effizient zu funktionieren. An der TU Wien konnten mit einer neuen Messmethode nun viele unterschiedliche Typen dieser Partikel gleichzeitig untersucht werden. Damit sind nun erstmals verlässliche Aussagen darüber möglich, wovon die Effizienz der Abgaskatalysatoren genau abhängt.

Niedrige Zündungs-Temperatur gesucht

„Einen großen Teil der Schadstoffemissionen verursacht ein Motor gleich nach dem Start, während der Katalysator noch kalt ist“, erklärt Prof. Günther Rupprechter vom Institut für Materialchemie der TU Wien. „Erst wenn eine bestimmte Temperatur überschritten wird, kommt es zur sogenannten katalytischen Zündung, und der Katalysator funktioniert mit hoher Effizienz.“ Um diese kritische Temperatur möglichst rasch zu erreichen, wurden bereits komplizierte und teuere Katalysator-Heizungen entwickelt. Energie- und kostensparender wäre es freilich, einen Katalysator zu bauen, der bereits bei möglichst niedrigen Temperaturen gut funktioniert.

Gerade oder schräg? Auf den Winkel kommt es an

Die kritische Temperatur, die der Katalysator erreichen muss, hängt vom verwendeten Material ab: besonders oft werden bei Abgaskatalysatoren die Edelmetalle Platin und Palladium verwendet. Wichtig ist aber auch, welche kristallographische Orientierung die Oberflächen der winzigen Metall-Körnchen haben. Kristalle kann man in unterschiedlichen ganz bestimmten Richtungen schneiden – das kennt man von geschliffenen Edelsteinen. Auch natürlich gewachsene Kristalle bilden die Oberflächen in verschiedenen Richtungen aus, und die Orientierung dieser Oberflächen bestimmt das chemische Verhalten. „Es zeigt sich, dass Oberflächen mit unterschiedlichen kristallographischen Richtungen bei unterschiedlich hohe Temperaturen für die katalytische Zündung benötigen“, erklärt Assoc. Prof. Yuri Suchorski, der mit Prof. Rupprechter zusammenarbeitet.

Viele Messungen in einem Experiment

Diesen Effekt im Detail zu untersuchen, war bisher kaum möglich: Ein Katalysator ist aus unzähligen winzigen Körnchen aufgebaut. „Bis jetzt konnte man nur die überlagerte Aktivität all dieser unterschiedlich orientierten Körnchen messen“, sagt Rupprechter. Ihm und seinem Team gelang es nun allerdings mit einem Photoemissions-Elektronenmikroskop, das auf Einsteins berühmtem „Photoeffekt“ basiert, die Zündungs-Temperaturen der einzelnen Metall-Körnchen während der laufenden Reaktion individuell zu analysieren. Verwendet wurde eine Folie, auf der viele winzige Kristalle – mit einem Durchmesser von nur etwa 100 Mikrometern – dicht nebeneinander angeordnet sind. Ihre Richtungen sind zufällig verteilt, man kann daher verschiedene Varianten von Kristallen bei einem einzigen Experiment untersuchen.

Unter dem Mikroskop wurde die Temperatur der Folie langsam erhöht – und tatsächlich zeigte sich, dass die katalytische Zündung je nach Orientierungsrichtung bei unterschiedlichen Temperaturen stattfand. „Wichtig ist für uns, unterschiedliche Kristallkörner dicht nebeneinander während eines einzigen Versuchs bei exakt gleichen Bedingungen untersuchen zu können“, erklären die Forscher. „Bei mehreren Versuchen hintereinander könnte man die äußeren Bedingungen niemals so perfekt reproduzieren, dass die einzelnen Messungen direkt vergleichbar wären.“
Mit den neuen Erkenntnissen kann man nun gezielt nach Herstellungsverfahren für Katalysatoren mit niedrigerer Zündungs-Temperatur gesucht werden. „Wir wissen nun, dass Palladium besser funktioniert als Platin, und wir wissen, welche kristallographische Richtung die niedrigste Zündungs-Temperatur verspricht“, sagt Günther Rupprechter. Nun soll es gelingen, diese Erkenntnisse auch technologisch umzusetzen, um Katalysatoren zu bauen, die im Auto nach dem Start möglichst rasch ihre Wirkung entfalten.

Originalpublikation: D. Vogel, Ch. Spiel, Y. Suchorski, A. Trinchero, R. Schlögl, Henrik Grönbeck, G. Rupprechter, “Local light-off in catalytic CO oxidation on low-index Pt and Pd surfaces: a combined PEEM, MS and DFT study”, Angewandte Chemie International Edition, 51 (2012) 10041–10044.

Rückfragehinweis:
Prof. Günther Rupprechter
Institut für Materialchemie
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-165100
guenther.rupprechter@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T.: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/katalysatoren/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten