Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kasseler Physiker weisen nach: Elektron gleichzeitig an zwei verschiedenen Orten

30.06.2014

Nach einem grundlegenden Theorem der Quantenmechanik sind bestimmte Elektronen in ihrem Ort nicht eindeutig bestimmbar. Zwei Physikern der Universität Kassel ist nun gemeinsam mit Kollegen in einem Experiment der Beweis gelungen, dass sich diese Elektronen tatsächlich an zwei Orten gleichzeitig aufhalten.

„Vermutet hat man dieses für den Laien schwer verständliche Verhalten schon lange, aber hier ist es zum ersten Mal gelungen, dies experimentell nachzuweisen“, erläuterte Prof. Dr. Arno Ehresmann, Leiter des Fachgebiets „Funktionale dünne Schichten und Physik mit Synchrotronstrahlung“ an der Universität Kassel. „In umfangreichen Versuchen haben wir an Elektronen von Sauerstoff-Molekülen die zum Beweis dieser Aussage charakteristischen Oszillationen nachgewiesen.“

Dr. André Knie, Mitarbeiter am Fachgebiet und Geschäftsführer des LOEWE-Forschungs-Schwerpunkts „Elektronendynamik chiraler Systeme“, ergänzte: „Dieses Experiment legt einen Grundstein für das Verständnis der Quantenmechanik, die uns wie so oft mehr Fragen als Antworten gibt. Besonders die Dynamik der Elektronen ist ein Feld der Quantenmechanik, dass zwar schon seit 100 Jahren untersucht wird, aber immer wieder neue und verblüffende Einsichten in unsere Natur ermöglicht.“

Die Ergebnisse veröffentlichte die Gruppe jetzt im Fachjournal „Physical Review Letters“; beteiligt waren neben Ehresmann und Knie Wissenschaftlerinnen und Wissenschaftler der Universitäten Triest, Berlin (FU) und Riad sowie des Fritz-Haber-Instituts der Max-Planck-Gesellschaft und des Deutschen Elektronen-Synchrotrons DESY.

Die theoretischen Grundlagen für die Entdeckung gehen auf Albert Einstein zurück. Er erhielt für die Beschreibung des sogenannten Photoeffekts 1922 den Physik-Nobelpreis. Danach können Elektronen aus Atomen oder Molekülen mit Hilfe von Licht dann entfernt werden, wenn die Energie des Lichts größer ist als die Bindungsenergie der Elektronen. Einstein hat schon 1905 die mathematische Beschreibung dieses sogenannten Photoeffekts abgeleitet, in dem er damals Unerhörtes annahm: Licht wird dazu als ein Strom aus Lichtteilchen beschrieben und je ein Lichtteilchen („Photon“) übergibt seine Energie an je ein Elektron. Übersteigt diese Energie die Energie, mit dem das Elektron an das Atom gebunden ist, wird das Elektron freigesetzt. Soweit wurde diese Annahme später auch experimentell bestätigt.

Einstein weitergedacht

Darauf aufbauend lässt sich das Verhalten von Elektronen weiter untersuchen. In einem zweiatomigen Molekül, das aus zwei gleichen Atomen zusammengesetzt ist (z. B. das Sauerstoffmolekül O2) gibt es Elektronen, die sehr eng an das jeweilige Atom gebunden sind. Im Teilchenbild könnte man sich vorstellen, dass diese Elektronen um das jeweilige Atom kreisen. Nach der Quantenmechanik sind diese Elektronen allerdings nicht zu unterscheiden. Für ein Photon mit einer Energie, die größer ist als die Bindungsenergie dieser Elektronen (für beide Elektronen ist die Bindungsenergie gleich) stellt sich nun die Frage: An welches dieser beiden für mich als Photon nicht zu unterscheidenden Elektronen gebe ich meine Energie ab?

Die Antwort der Quantenmechanik lautet: Das Photon gibt seine Energie zwar an ein einziges Elektron ab, aber dieses befindet sich mit einer gewissen Wahrscheinlichkeit gleichzeitig nahe bei Atom 1 und nahe bei Atom 2 (das Gleiche gilt für das andere Elektron). Und: Elektronen sind auch als Welle verstehbar, genauso wie damals Einstein zur Beschreibung des Lichts Teilchen angenommen hat. Wird nun ein einziges Elektron vom Atom entfernt, so laufen die zugehörigen Wellen sowohl von Atom 1 aus, als auch von Atom 2, da sich dieses Elektron ja gleichzeitig da und dort befindet. Seit langem wurde daher schon vorhergesagt, dass sich diese beiden Wellen überlagern müssen und damit interferieren. Experimentell war der Nachweis dieser Interferenzmuster bis dato noch nicht gelungen.

Genau dies glückte jedoch nun der Forschungsgruppe, an der die Kasseler Physiker Ehresmann und Knie beteiligt waren - ein eindeutiger Beleg, dass sich ein Elektron gleichzeitig an zwei verschiedenen Orten aufhält. Die Experimente wurden an den Synchrotronstrahlungsanlagen DORIS III bei DESY in Hamburg sowie BESSY II in Berlin durchgeführt. Dabei wurde monochromatische Synchrotronstrahlung auf gasförmige Moleküle fokussiert. Diese wurden durch die Strahlung ionisiert und die bei der Ionisation freiwerdenden Elektronen durch sogenannte Elektronenspektrometer winkel- und energieaufgelöst detektiert.

Andre Knie ist Geschäftsführer und Arno Ehresmann Koordinator des LOEWE-Schwerpunkts „Elektronendynamik chiraler Systeme“. Untersucht wird hier, warum sich Stoffe mit einer spiegelbildlichen Anordnung von Atomen oft völlig unterschiedlich verhalten. Die Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz – kurz LOEWE – ist ein Programm, mit dem das Land Hessen seit 2008 die Forschungslandschaft stärkt und herausragende wissenschaftliche Verbundvorhaben fördert.

Bild von Prof. Dr. Arno Ehresmann (Foto: Uni Kassel) unter:
www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2014/Universitaet_Kassel_ELCH_2012-09-10_66088469.jpg

Bild von Dr. André Knie (Foto: Uni Kassel) unter:
www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2014/Universitaet_Kassel_ELCH_2012-09-10_66086677.jpg

“Angular Momentum Sensitive Two-Center Interference”, Phys. Rev. Lett. 112, 023001 –15. Januar 2014.
Link zum Artikel: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.023001

Kontakt:
Prof. Dr. Arno Ehresmann
Universität Kassel
Fachgebiets Dünne Schichten und Synchrotronstrahlungen
Tel: +49 561 804-4061
Email: ehresmann@physik.uni-kassel.de

Dr. Andre Knie
Universität Kassel
Fachgebiets Dünne Schichten und Synchrotronstrahlungen
Tel: +49 561 804-4061
Email knie@uni-kassel.de

Weitere Informationen:

http://www.uni-kassel.de/uni/nc/universitaet/nachrichten/article/kasseler-physik...

Sebastian Mense | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise