Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kasseler Physiker weisen nach: Elektron gleichzeitig an zwei verschiedenen Orten

30.06.2014

Nach einem grundlegenden Theorem der Quantenmechanik sind bestimmte Elektronen in ihrem Ort nicht eindeutig bestimmbar. Zwei Physikern der Universität Kassel ist nun gemeinsam mit Kollegen in einem Experiment der Beweis gelungen, dass sich diese Elektronen tatsächlich an zwei Orten gleichzeitig aufhalten.

„Vermutet hat man dieses für den Laien schwer verständliche Verhalten schon lange, aber hier ist es zum ersten Mal gelungen, dies experimentell nachzuweisen“, erläuterte Prof. Dr. Arno Ehresmann, Leiter des Fachgebiets „Funktionale dünne Schichten und Physik mit Synchrotronstrahlung“ an der Universität Kassel. „In umfangreichen Versuchen haben wir an Elektronen von Sauerstoff-Molekülen die zum Beweis dieser Aussage charakteristischen Oszillationen nachgewiesen.“

Dr. André Knie, Mitarbeiter am Fachgebiet und Geschäftsführer des LOEWE-Forschungs-Schwerpunkts „Elektronendynamik chiraler Systeme“, ergänzte: „Dieses Experiment legt einen Grundstein für das Verständnis der Quantenmechanik, die uns wie so oft mehr Fragen als Antworten gibt. Besonders die Dynamik der Elektronen ist ein Feld der Quantenmechanik, dass zwar schon seit 100 Jahren untersucht wird, aber immer wieder neue und verblüffende Einsichten in unsere Natur ermöglicht.“

Die Ergebnisse veröffentlichte die Gruppe jetzt im Fachjournal „Physical Review Letters“; beteiligt waren neben Ehresmann und Knie Wissenschaftlerinnen und Wissenschaftler der Universitäten Triest, Berlin (FU) und Riad sowie des Fritz-Haber-Instituts der Max-Planck-Gesellschaft und des Deutschen Elektronen-Synchrotrons DESY.

Die theoretischen Grundlagen für die Entdeckung gehen auf Albert Einstein zurück. Er erhielt für die Beschreibung des sogenannten Photoeffekts 1922 den Physik-Nobelpreis. Danach können Elektronen aus Atomen oder Molekülen mit Hilfe von Licht dann entfernt werden, wenn die Energie des Lichts größer ist als die Bindungsenergie der Elektronen. Einstein hat schon 1905 die mathematische Beschreibung dieses sogenannten Photoeffekts abgeleitet, in dem er damals Unerhörtes annahm: Licht wird dazu als ein Strom aus Lichtteilchen beschrieben und je ein Lichtteilchen („Photon“) übergibt seine Energie an je ein Elektron. Übersteigt diese Energie die Energie, mit dem das Elektron an das Atom gebunden ist, wird das Elektron freigesetzt. Soweit wurde diese Annahme später auch experimentell bestätigt.

Einstein weitergedacht

Darauf aufbauend lässt sich das Verhalten von Elektronen weiter untersuchen. In einem zweiatomigen Molekül, das aus zwei gleichen Atomen zusammengesetzt ist (z. B. das Sauerstoffmolekül O2) gibt es Elektronen, die sehr eng an das jeweilige Atom gebunden sind. Im Teilchenbild könnte man sich vorstellen, dass diese Elektronen um das jeweilige Atom kreisen. Nach der Quantenmechanik sind diese Elektronen allerdings nicht zu unterscheiden. Für ein Photon mit einer Energie, die größer ist als die Bindungsenergie dieser Elektronen (für beide Elektronen ist die Bindungsenergie gleich) stellt sich nun die Frage: An welches dieser beiden für mich als Photon nicht zu unterscheidenden Elektronen gebe ich meine Energie ab?

Die Antwort der Quantenmechanik lautet: Das Photon gibt seine Energie zwar an ein einziges Elektron ab, aber dieses befindet sich mit einer gewissen Wahrscheinlichkeit gleichzeitig nahe bei Atom 1 und nahe bei Atom 2 (das Gleiche gilt für das andere Elektron). Und: Elektronen sind auch als Welle verstehbar, genauso wie damals Einstein zur Beschreibung des Lichts Teilchen angenommen hat. Wird nun ein einziges Elektron vom Atom entfernt, so laufen die zugehörigen Wellen sowohl von Atom 1 aus, als auch von Atom 2, da sich dieses Elektron ja gleichzeitig da und dort befindet. Seit langem wurde daher schon vorhergesagt, dass sich diese beiden Wellen überlagern müssen und damit interferieren. Experimentell war der Nachweis dieser Interferenzmuster bis dato noch nicht gelungen.

Genau dies glückte jedoch nun der Forschungsgruppe, an der die Kasseler Physiker Ehresmann und Knie beteiligt waren - ein eindeutiger Beleg, dass sich ein Elektron gleichzeitig an zwei verschiedenen Orten aufhält. Die Experimente wurden an den Synchrotronstrahlungsanlagen DORIS III bei DESY in Hamburg sowie BESSY II in Berlin durchgeführt. Dabei wurde monochromatische Synchrotronstrahlung auf gasförmige Moleküle fokussiert. Diese wurden durch die Strahlung ionisiert und die bei der Ionisation freiwerdenden Elektronen durch sogenannte Elektronenspektrometer winkel- und energieaufgelöst detektiert.

Andre Knie ist Geschäftsführer und Arno Ehresmann Koordinator des LOEWE-Schwerpunkts „Elektronendynamik chiraler Systeme“. Untersucht wird hier, warum sich Stoffe mit einer spiegelbildlichen Anordnung von Atomen oft völlig unterschiedlich verhalten. Die Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz – kurz LOEWE – ist ein Programm, mit dem das Land Hessen seit 2008 die Forschungslandschaft stärkt und herausragende wissenschaftliche Verbundvorhaben fördert.

Bild von Prof. Dr. Arno Ehresmann (Foto: Uni Kassel) unter:
www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2014/Universitaet_Kassel_ELCH_2012-09-10_66088469.jpg

Bild von Dr. André Knie (Foto: Uni Kassel) unter:
www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2014/Universitaet_Kassel_ELCH_2012-09-10_66086677.jpg

“Angular Momentum Sensitive Two-Center Interference”, Phys. Rev. Lett. 112, 023001 –15. Januar 2014.
Link zum Artikel: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.023001

Kontakt:
Prof. Dr. Arno Ehresmann
Universität Kassel
Fachgebiets Dünne Schichten und Synchrotronstrahlungen
Tel: +49 561 804-4061
Email: ehresmann@physik.uni-kassel.de

Dr. Andre Knie
Universität Kassel
Fachgebiets Dünne Schichten und Synchrotronstrahlungen
Tel: +49 561 804-4061
Email knie@uni-kassel.de

Weitere Informationen:

http://www.uni-kassel.de/uni/nc/universitaet/nachrichten/article/kasseler-physik...

Sebastian Mense | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften