Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Karlsruher Tarnkappe: „Sichtbar verschwinden“

16.05.2011
"Mit den eigenen Augen etwas Unsichtbares zu sehen, ist eine spannende Erfahrung", so Joachim Fischer und Tolga Ergin.

Die beiden Physiker haben am Center for Functional Nanostructures (CFN) am Karlsruher Institut für Technologie (KIT) in der Arbeitsgruppe von Professor Martin Wegener fast ein Jahr daran gearbeitet, die Struktur der Karlsruher Tarnkappe so zu verfeinern, dass sie auch in einem für den Menschen sichtbaren Bereich des Lichts wirkt.

Tarnkappen funktionieren, indem Lichtwellen in ihrem Material so gelenkt werden, dass sie die Tarnkappe wieder verlassen, als ob sie nie mit dem zu tarnenden Objekt in Berührung gekommen wären – das Objekt ist somit für den Betrachter unsichtbar. Die exotischen optischen Eigenschaften des Tarnmaterials werden mit komplexen mathematischen Werkzeugen berechnet, die denen der Einsteinschen Relativitätstheorie ähneln.

Erreicht werden diese durch eine spezielle Strukturierung des Tarnmaterials. Sie muss kleiner als die Wellenlänge des Lichts sein, das abgelenkt werden soll. So kann beispielsweise für die relativ großen Rundfunk- oder Radarwellen ein Material verwendet werden, "das fast mit der Nagelschere produziert werden kann“, so Wegener. Bei Wellenlängen, die für das menschliche Auge sichtbar sind, müssen dagegen Materialien mit Strukturierung im Nanometerbereich hergestellt werden.

Die winzige Tarnkappe, die Fischer und Ergin nun erzeugt haben, ist kleiner als der Durchmesser eines menschlichen Haares. Sie lässt eine Wölbung in einem Metallspiegel flach erscheinen und dadurch ein darunter verstecktes Objekt unsichtbar werden. Das Metamaterial, das über diese Wölbung gelegt wird, sieht wie ein Holzstapel aus, besteht jedoch aus Kunststoff und Luft. Die "Holzscheite" verfügen über präzise festgelegte Stärken im Bereich von 100 Nanometern. Durch sie werden Lichtwellen, die die Wölbung normalerweise ablenkt, so beeinflusst und geführt, dass das reflektierte Licht dem eines flachen Spiegels entspricht.

„Würden wir es noch mal schaffen, den Strukturierungsabstand des roten Tarnmantels zu halbieren, hätten wir eine Tarnkappe, die das ganze sichtbare Lichtspektrum abdeckt", so Fischer.

Bereits im vergangenen Jahr präsentierte die Gruppe Wegener in der renommierten Fachzeitschrift Science die erste 3D Tarnkappe. Bis zu diesem Zeitpunkt gab es lediglich Tarnkappen in Wellenleitern, die praktisch zweidimensional waren. Sobald man aus der dritten Dimension auf die Struktur schaute, war die Wirkung dahin. Die Karlsruher Tarnkappe konnte mit einer entsprechend filigranen Strukturierung für einen Wellenlängenbereich von 1500 bis 2600 Nanometern konstruiert werden. Dieser Wellenlängenbereich ist für das menschliche Auge noch nicht wahrnehmbar, spielt jedoch in der Telekommunikation eine große Rolle. Den Durchbruch ermöglichte das am CFN entwickelte Verfahren des Direkten Laser Schreibens (DLS). Mit diesem Verfahren können winzige 3D-Strukturen mit optischen Eigenschaften erzeugt werden, die es in der Natur nicht gibt – sogenannte Metamaterialien.

Die KIT-Wissenschaftler verbesserten im vergangenen Jahr das ohnehin schon extrem feine Verfahren des Direkten Laser Schreibens weiter. Dabei benutzten sie Methoden aus der Mikroskopie, welche dort zu fundamentalen Auflösungsverbesserungen geführt haben. Damit hatten sie das entscheidende Werkzeug zur Hand, das Metamaterial um einen Faktor 2 zu verfeinern und so die erste 3D-Tarnkappe für unpolarisiertes sichtbares Licht im Bereich von 700 Nanometern zu realisieren. Dies entspricht der Farbe rot.

„Die nun entwickelte Tarnkappe ist ein attraktives Demonstrationsobjekt für die fantastischen Möglichkeiten, welche das recht neue Gebiet der Transformationsoptik und ihrer Metamaterialien offeriert. In den vergangenen Jahren haben sich hier Gestaltungsspielräume eröffnet, die lange für nicht möglich gehalten wurden“, so Ergin. „Wir erwarten dramatische Verbesserungen in den lichtbasierten Technologien, wie Linsen, Solarzellen, Mikroskopen, Objektiven, der Chip-Herstellung und der Datenkommunikation:“

Literatur
J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak”, Optics Letters, in press

Hintergrundinformation

Der Weg zur Karlsruher Tarnkappe
Hinter der „kleinen Verbesserung“ des Karlsruher Metamaterials mit großer Wirkung steckt eine Reihe von Entwicklungsschritten, die noch vor wenigen Jahren als nicht realisierbar erschienen. Bis zum Anfang des 21. Jahrhunderts hielt man es noch für unmöglich, überhaupt ein Material zu entwickeln, mit dem man in der Lage ist, Licht so zu manipulieren, dass das Material wie eine Tarnkappe wirken kann. 2006 wurden in der Theorie der Transformationsoptik die Grundlagen für eine Tarnkappe erstmals beschrieben.

Aufgrund von theoretischen Berechnungen wurde begonnen entsprechendes Material künstlich zu erzeugen. Sir John B. Pendry (Imperial College, London, U.K.) und David R. Smith (Duke University, Durham, NC, USA and Imperial College, London, U.K.) publizierten im Jahr 2006 ihre Ergebnisse für eine Tarnkappe für Radarwellen, 2008 stellten Jensen Li (City University of Hong Kong, China) und Sir John B. Pendry die theoretische Idee der Teppichtarnkappe vor, 2010 präsentieren Wegener und sein Team in Karlsruhe am KIT die erste 3D-Tarnkappe, 2011 lassen sich die Effekte der Karlsruher Tarnkappe auch mit bloßem Auge erkennen.

Transformationsoptik
Die in den letzten Jahren entwickelte Theorie der Transformationsoptik sagt aus, dass jede beliebige gewünschte Verformung der Raum-Zeit mathematisch exakt auf ein gedachtes Material abgebildet werden kann, dessen optische Eigenschaften in einer bestimmten Art und Weise räumlich variieren. Um beispielsweise eine optische Tarnkappe zu realisieren, könnte man einen Punkt im Raum aufweiten zu einem endlich großen Volumen, in dem sich dann beliebige Objekte verstecken lassen. Die mathematischen Vorschriften der Transformationsoptik lehnen sich an die Allgemeine Relativitätstheorie an.
Direktes Laserschreiben (DLS)
Das DLS ist ein fotolithografisches Verfahren zur Herstellung beliebiger dreidimensionaler Mikrostrukturen. Im Mikroskop wird Fotolack, der über einem computergesteuerten, piezogetriebenen Tisch in drei Ebenen bewegt wird, durch das Objektiv eines stark fokussierten Laserstrahls belichtet. In dem eng umrissenen Bereich, in dem der Fotolack von dem Strahl getroffen wird, wird die Löslichkeit des Materials verändert. Je nach Art des Fotolacks werden im Entwicklungsbad die belichteten oder die unbelichteten Regionen ausgewaschen. Mit herkömmlichem DLS können Strukturgrößen von 100 nm Breite und 300 nm Höhe erreicht werden. Mit dem am CFN weiterentwickelten Ansatz kann die Höhe auf 150 nm reduziert werden, obwohl das herkömmliche DLS schon an der Grenze der physikalischen Auflösung operiert.
Metamaterialien
Metamaterialien sind künstlich hergestellte Strukturen, die sich wie ein einheitliches Material verhalten und Eigenschaften besitzen, die in der Natur nicht vorkommen. Sie sind aus gleichartigen, regelmäßig angeordneten Elementen aufgebaut, die, obwohl deutlich größer als Atome in einem Kristall, wie diese mit elektromagnetischen Wellen wechselwirken. Mit nanotechnologischen Methoden produzierte Metamaterialien bestehen aus so kleinen Einheiten, dass sie elektromagnetische Wellen mit Wellenlängen vom Sichtbaren bis hin zum Infrarot-Licht beeinflussen können.
DFG-Centrum für Funktionelle Nanostrukturen (CFN)
Das DFG-Centrum für Funktionelle Nanostrukturen (CFN) hat sich einem wichtigen Bereich der Nanotechnologie verschrieben: den funktionellen Nanostrukturen. Ziel ist es durch exzellente interdisziplinäre und internationale Forschung Nano-Strukturen mit neuen technologischen Funktionen darzustellen sowie den ersten Schritt von der Grundlagenforschung zur Anwendung zu gehen. Zurzeit arbeiten in Karlsruhe mehr als 250 Wissenschaftler und Techniker über das CFN vernetzt in mehr als 80 Teilprojekten zusammen. Der Fokus liegt auf den Bereichen Nano-Photonik, Nano-Elektronik, Molekulare Nanostrukturen, Nano-Biologie und Nano-Energie. www.cfn.kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Tatjana Erkert
DFG-Centrum für Funktionelle
Nanostrukturen (CFN)
Tel.: +49 721 608-43409
Fax: +49 721 608-48496
E-Mail: tatjana.erkert@kit.edu

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie