Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Kamera für ein Schwarzes Loch

17.12.2013
Für den Aufbau eines Beobachtungssystems, mit dem erstmals exakte Bilder eines Schwarzen Lochs aufgenommen werden können, hat der Europäische Forschungsrat (ERC) 14 Millionen Euro bewilligt.

Das Team, geleitet von Prof. Heino Falcke, Radboud-Universität Nimwegen, Prof. Michael Kramer, Max-Planck-Institut für Radioastronomie in Bonn und von Prof. Luciano Rezzolla, Goethe-Universität Frankfurt und Max-Planck-Institut für Gravitationsphysik, Potsdam, wird damit Vorhersagen der Allgemeinen Relativitätstheorie Albert Einsteins überprüfen. Der ERC fördert ihre Arbeit durch einen Synergy Grant. Dies ist die höchstdotierte und begehrteste vom EU-Forschungsrat vergebene Förderung.


Schatten des Ereignishorizonts eines Schwarzen Lochs nach Simulationen auf der Basis von Einsteins Allgemeiner Relativitätstheorie.


M. Moscibrodzka & H. Falcke, Radboud-Universität Nimwegen.

Schwarze Löcher können nicht direkt beobachtet werden, weil ihr Gravitationsfeld so stark ist, dass selbst Licht darin stecken bleibt. Für die Grenze, an der Licht-Teilchen dem Sog nicht mehr entkommen können, den Ereignishorizont, gibt es bisher nur theoretische Berechnungen. "Während die meisten Astrophysiker davon überzeugt sind, dass Schwarze Löcher existieren, hat tatsächlich noch niemand ein Schwarzes Loch sehen können", sagt Heino Falcke, Professor für Radioastronomie an der Radboud-Universität Nimwegen und am niederländischen Forschungszentrum ASTRON. "Jetzt erst ist die technologische Entwicklung so weit, dass wir Schwarze Löcher abbilden und damit überprüfen können, ob sie so existieren wie vorhergesagt: Ohne Ereignishorizont gibt es auch keine Schwarzen Löcher." Den wollen die Astrophysiker nun erstmals messen, indem sie ins Zentrum unserer Milchstraße schauen. Dort befindet sich Sagittarius A*, ein Schwarzes Loch mit der Masse von vier Millionen Sonnenmassen.

Das Schwergewicht macht sich bemerkbar, indem es ständig Radiowellen aussendet. Es sind die letzten Lebenszeichen von gewaltigen Gasmassen, die den Ereignishorizont überqueren. Indem Astrophysiker mit verschiedenen Radioteleskopen weltweit die Radiowellen von Sagittarius A* bis an ihren Ursprung verfolgen, erwarten sie, den Ereignishorizont als einen schwarzen Schatten sichtbar machen zu können. In der Entfernung zum Galaktischen Zentrum erscheint dieser nur etwa so dick wie ein Apfel auf dem Mond, den man von der Erde aus betrachtet. Um so kleine Strukturen detektieren zu können, hat Heino Falcke schon vor 15 Jahren vorgeschlagen, die von einem weltweiten Netzwerk von Radioteleskopen bei hoher Frequenz gemessenen Signale mit genauen Zeitangaben zu speichern und dann rechnerisch zu vergleichen (Messmethode der Very Long Baseline Interferometrie, VLBI). Inzwischen gibt es internationale Bemühungen, ein Ereignishorizont-Teleskop nach diesem Prinzip zu konstruieren. "Mit den Mitteln des ERC-Grants und der hervorragenden Kompetenz, über die wir hier in Europa verfügen, können wir diese Pläne nun zusammen mit unseren internationalen Partnern verwirklichen", so Falcke.

Darüber hinaus möchte die Gruppe mithilfe von Radioteleskopen neue Pulsare in der Nähe des Schwarzen Lochs im Zentrum unserer Milchstraße aufspüren. Pulsare sind schnell rotierende Neutronensterne, die als präzise Uhren im All genutzt werden können. "Ein Pulsar in der direkten Umgebung eines Schwarzen Lochs ist für unsere Forschung von extremem Wert", erklärt Michael Kramer, geschäftsführender Direktor des Max-Planck-Instituts für Radioastronomie in Bonn. "Pulsare ermöglichen es uns, die von der Allgemeinen Relativitätstheorie vorhergesagte Krümmung von Raum und Zeit in der Nähe eines Schwarzen Lochs mit bisher unerreichter Genauigkeit zu vermessen." Merkwürdigerweise hat man aber bisher im Zentrum der Milchstraße kaum Pulsare gefunden. Eine Ausnahme ist der kürzlich von Michael Kramer und seiner Forschungsgruppe in der Nähe von Sagittarius A* gefundene Pulsar. "Wir vermuten, dass es davon noch mehr gibt. Und dann werden wir sie auch finden", erwartet Kramer.

Um sicher zu sein, dass im Zentrum der Milchstraße tatsächlich ein Schwarzes Loch und nicht etwas anderes ist, wollen die Astrophysiker die experimentellen Daten vom Schatten des Ereignishorizonts und der Bewegung der Pulsare und Sterne im Umkreis von Sagittarius A* mit Computersimulationen vergleichen. Dafür ist Luciano Rezzolla der Experte. Der Professor für Theoretische Astrophysik an der Goethe-Universität leitet auch am Max-Planck-Institut für Gravitationsphysik in Potsdam die Arbeitsgruppe Modellierung von Gravitationswellen. "Wir können inzwischen sehr präzise berechnen, wie Raum und Zeit durch das immense Gravitationsfeld eines Schwarzen Loches gekrümmt werden und wie Licht und Materie sich in dessen Umfeld bewegen", erklärt Rezzolla.

"Einsteins Allgemeine Relativitätstheorie ist die beste Gravitationstheorie, die wir kennen, aber es ist nicht die einzige. Wir werden diese Beobachtungen nutzen, um herauszufinden, ob Schwarze Löcher, eines der Lieblingskinder unter den astronomischen Objekten, wirklich existieren", so Rezzolla weiter. Schließlich will er mit seinen Kollegen die Gravitationstheorie auf einer Skala überprüfen, die früher dem Bereich des Science Fiction angehörte. "Das wird ein Wendepunkt in der modernen Wissenschaft", prognostiziert der italienischstämmige Astrophysiker.

Der ERC vergibt Synergy Grants für wissenschaftlich exzellente Forschungsvorhaben in einem aufwendigen und durch starke Konkurrenz geprägten Auswahlprozess. Die Zuwendungen betragen höchstens 15 Million Euro und verlangen die Zusammenarbeit von zwei bis vier hauptverantwortlichen Forschern. In der aktuellen Auswahlrunde wählte der ERC von 449 Forschungsanträgen aus allen Bereichen der Wissenschaft 13 Projekte aus. Das entspricht einer Erfolgsquote von weniger als drei Prozent. Zum ersten Mal wurde ein Antrag aus der Astrophysik berücksichtigt.

An diesem ERC-Grant sind weitere Partner in Europa beteiligt:

Robert Laing von der Europäischen Südsternwarte (ESO) in Garching, Wissenschaftler bei ALMA, einem neuen Hochfrequenz-Radioteleskop in der chilenischen Atacamawüste,
Frank Eisenhauer, Max-Planck-Institut für extraterrestrische Physik in Garching, leitender Wissenschaftler des GRAVITY-Projekts, das eine neue Kamera für optische Teleskope der ESO baut, um die Masse von Sagittarius A* mithilfe der Bewegung von Sternen präzise messen zu können, und

Huib-Jan van Langevelde, Direktor des Joint Institute for VLBI in Europa.

Die Beiträge des Max-Planck-Instituts für Radioastronomie erfolgen in Zusammenarbeit zwischen den Forschungsabteilungen Radioastronomische Fundamentalphysik (Direktor: Michael Kramer), Very Long Baseline Interferometrie/VLBI (Direktor: Anton Zensus) und Millimeter- und Submillimeter-Astronomie (Direktor: Karl Menten).

Die Wissenschaftler werden im Rahmen ihres Forschungsprojekts Beobachtungen an zwei großen europäischen Observatorien für Radiobeobachtungen im Millimeterwellenbereich (Radiointerferometer NOEMA und IRAM-30m-Radioteleskop) durchführen, die beide vom deutsch-französisch-spanischen Forschungsinstitut IRAM (Institut de Radioastronomie Millimétrique) betrieben werden.

Das Forschungsprojekt BlackHoleCam wird in enger Zusammenarbeit mit dem Event Horizon Telescope-Projekt durchgeführt, das unter der Leitung von Shep Doeleman (MIT Haystack Observatorium, Boston, USA) steht.

Projektleiter (Principal Investigators):
Heino Falcke, Radboud University Nijmegen und ASTRON, Niederlande;
Michael Kramer, Max-Planck-Institut für Radioastronomie, Bonn und Universität Manchester, Großbritannien;

Luciano Rezzolla, Goethe-Universität Frankfurt und Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Potsdam.

Projekttitel:
BlackHoleCam: Imaging the Event Horizon of Black Holes
Kontakt Bonn:
Prof. Dr. Michael Kramer
Direktor und Leiter der Forschungsabteilung „Radioastronomische Fundamentalphysik“
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-525-278
E-mail: mkramer@mpifr-bonn.mpg.de
Prof. Dr. Heino Falcke
Radboud-Universität Nimwegen, ASTRON & MPIfR Bonn
Mobile: +49 151 23040365
E-Mail: h.falcke@astro.ru.nl
Dr. Norbert Junkes
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de
Kontakt Frankfurt:
Prof. Dr. Luciano Rezzolla
Institut für Theoretische Physik, Campus Riedberg
Fon: +49(0)69-798-47871
E-Mail: rezzolla@th.physik.uni-frankfurt.de
Dr. Anne Hardy
Referentin für Wissenschaftskommunikation
Fon: +49(0)69-798-29228
hardy@pvw.uni-frankfurt.de
Kontakt Potsdam:
Prof. Dr. Luciano Rezzolla
Leiter der Arbeitsgruppe „Modellierung von Gravitationswellen“ am Albert-Einstein-Institut

E-Mail: luciano.rezzolla@aei.mpg.de

Dr. Elke Müller
Pressereferentin am Albert-Einstein-Institut
Tel. +49(0) 331-567-7303
E-Mail: elke.müller@aei.mpg.de

Norbert Junkes | Max-Planck-Institut
Weitere Informationen:
http://www.mpifr-bonn.mpg.de/mitteilungen/2013/8

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie