Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

‚Kalter‘ Wind des Krebspulsars erzeugt höchstenergetische Gammastrahlenpulse

16.02.2012
Eine der hellsten Hochenergie-Gammastrahlenquellen am Himmel ist der Krebspulsar, von dem kürzlich auch gepulste höchstenergetische Strahlung beobachtet wurde.

Wissenschaftler um Felix Aharonian vom MPI für Kernphysik und dem Dublin Institute for Advanced Studies haben dafür eine Erklärung gefunden. Sie beruht auf der abrupten Beschleunigung eines ultraschnellen Windes aus „kalten“ Elektronen und Positronen, die einige Erddurchmesser vom Pulsar entfernt erfolgt. (Nature, 15.02.2012 online)


Abb. 1: Der Krebsnebel (M1) im Sternbild Stier (Taurus), aufgenommen vom Hubble-Weltraumteleskop (unten links). Der Ausschnitt rechts zeigt ein Komposit aus sichtbarem Licht (rot) und Röntgenstrahlung (blau) mit dem Pulsar als Zentralstern. An der Schockfront trifft in 0,3 Lichtjahren Entfernung vom Pulsar der ultrarelativistische Wind aus Elektronen und Positronen auf den umgebenden Nebel.
Grafik: MPIK, Bildquelle: NASA


Abb. 2: Schematische Darstellung der Entwicklung des Pulsarwindes (Elektronen und Positronen: e–, e+). Hochenergetische Gammaquanten (γ) entstehen in der Beschleunigungszone durch inverse Compton-Streuung des Pulsarwindes mit Röntgenquanten (X) aus der Magnetosphäre sowie in großer Entfernung an der Schockfront zum interstellaren Medium.
Gafik: MPIK

Der Krebspulsar, ein sich schnell drehender Neutronenstern mit einem starken Magnetfeld, ist das Ergebnis der spektakulären Supernova, die im Jahre 1054 n. Chr. im Sternbild Stier aufleuchtete. Er hat 1,4 bis 2 Sonnenmassen und einen Durchmesser von nur 28 bis 30 km. Gemeinsam mit dem ihn umgebenden Krebsnebel gehört er zu den am besten untersuchten astronomischen Objekten (Abb. 1).

Astrophysiker gehen von der Existenz eines relativistischen Windes aus Elektronen und ihren Antiteilchen, den Positronen aus, welcher aus der Magnetosphäre des Krebspulsars entweicht und dann im interstellaren Medium endet. Die Entwicklung dieses Windes verläuft in drei aufeinanderfolgenden Phasen (Abb. 2): In etwa 1000 Kilometern Abstand vom Pulsar wird die Rotationsenergie des Pulsars in elektromagnetische Energie umgewandelt, die dann ihrerseits in Bewegungsenergie des Elektron-Positron-Plasmas konvertiert, der Wind also beschleunigt wird. Schließlich endet der Wind durch Kollision mit der umgebenden Materie in einer stehenden Schockwelle in etwa 0,3 Lichtjahren Entfernung. Dabei werden Elektronen und Positronen auf extrem hohe Energien beschleunigt und so die ausgedehnte nicht-thermische Strahlung des Krebsnebels verursacht. Um die beobachteten Daten erklären zu können, sollten alle drei Prozesse außerordentlich (fast 100%) effizient verlaufen.

Sowohl der Krebspulsar als auch der Krebsnebel sind starke Quellen im Gammastrahlenlicht, wobei der Pulsar im hohen und der Nebel vorwiegend im sehr hohen Energiebereich strahlen. Die dritte Schlüsselkomponente, der Wind, die den Energietransport vom Pulsar zum Nebel ermöglicht, scheint auf den ersten Blick jedoch eine ‘unsichtbare Substanz’ zu sein. Denn obwohl der Wind selbst relativistisch ist, sind im mitbewegten System die Elektronen „kalt”: sie weisen keine Relativbewegung zum Magnetfeld auf und emittieren daher keine Strahlung. Allerdings kann der Wind im Gammastrahlenlicht sichtbar werden, wenn Röntgen-Photonen aus der Magnetosphäre und/oder der Oberfläche des Neutronensterns durch die schnellen Elektronen und Positronen des Windes zu höheren Energien hin gestreut werden. Dieser Prozess wird inverse Compton-Streuung genannt. In einem Beitrag in Nature zeigen Felix Aharonian, Sergey Bogovalov und Dmitry Khangulyan, dass sich die neuesten überraschenden Entdeckungen gepulster sehr hochenergetischer Gammastrahlung durch die Tscherenkow-Teleskopsysteme VERITAS und MAGIC am besten über die inverse Compton-Streuung erklären lassen. Gepulste Röntgen-Photonen des Pulsars wechselwirken mit schnellen Elektronen des Windes vorwiegend in deren Beschleunigungszone. Der Wind ist somit die Quelle der gepulsten Gammastrahlung und erklärt die Beobachtungen mit nur drei Parametern: Beschleunigungsort des Windes, Endgeschwindigkeit und Anisotropie.

Wenn diese Erklärung zutrifft, dann liefert die Entdeckung gepulster, sehr hochenergetischer Gammastrahlung den ersten Beobachtungsnachweis für die Existenz eines kalten, ultraschnellen Elektron-Positron-Windes im Krebspulsar. Die Gammabeobachtungen ermöglichen eine gute Lokalisierung der Stelle, an der die elektromagnetische Energie des Windes in Bewegungsenergie umgewandelt wird, sowie eine gute Abschätzung der Geschwindigkeit, mit der dieser Übergang erfolgt. Die Ergebnisse zeigen eine nahezu plötzliche Beschleunigung des Windes auf ultra-relativistische Geschwindigkeiten in einem engen zylindrischen Abstandsbereich von 20-50 Tausend Kilometern um die Rotationsachse des Pulsars. Obwohl die gefundene, ultraschnelle Natur des Windes die allgemeine Grundvorstellung von Pulsarwinden unterstützt, bedeutet diese schnelle Umwandlung in einer engen Zone nicht allzu weit vom Pulsar entfernt eine Herausforderung für bestehende Modelle.

Originalveröffentlichung:
Abrupt acceleration of a 'cold' ultrarelativistic wind from the Crab pulsar
F. A. Aharonian, S. V. Bogovalov and D. Khangulyan
Nature, doi: 10.1038/nature10793
Kontakt:
Prof. Dr. Felix Aharonian
MPI für Kernphysik
Tel: (+49)6221-516-485
E-Mail: felix.aharonian (at) mpi-hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de/astrophysik/HEA/1024.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE