Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

‚Kalter‘ Wind des Krebspulsars erzeugt höchstenergetische Gammastrahlenpulse

16.02.2012
Eine der hellsten Hochenergie-Gammastrahlenquellen am Himmel ist der Krebspulsar, von dem kürzlich auch gepulste höchstenergetische Strahlung beobachtet wurde.

Wissenschaftler um Felix Aharonian vom MPI für Kernphysik und dem Dublin Institute for Advanced Studies haben dafür eine Erklärung gefunden. Sie beruht auf der abrupten Beschleunigung eines ultraschnellen Windes aus „kalten“ Elektronen und Positronen, die einige Erddurchmesser vom Pulsar entfernt erfolgt. (Nature, 15.02.2012 online)


Abb. 1: Der Krebsnebel (M1) im Sternbild Stier (Taurus), aufgenommen vom Hubble-Weltraumteleskop (unten links). Der Ausschnitt rechts zeigt ein Komposit aus sichtbarem Licht (rot) und Röntgenstrahlung (blau) mit dem Pulsar als Zentralstern. An der Schockfront trifft in 0,3 Lichtjahren Entfernung vom Pulsar der ultrarelativistische Wind aus Elektronen und Positronen auf den umgebenden Nebel.
Grafik: MPIK, Bildquelle: NASA


Abb. 2: Schematische Darstellung der Entwicklung des Pulsarwindes (Elektronen und Positronen: e–, e+). Hochenergetische Gammaquanten (γ) entstehen in der Beschleunigungszone durch inverse Compton-Streuung des Pulsarwindes mit Röntgenquanten (X) aus der Magnetosphäre sowie in großer Entfernung an der Schockfront zum interstellaren Medium.
Gafik: MPIK

Der Krebspulsar, ein sich schnell drehender Neutronenstern mit einem starken Magnetfeld, ist das Ergebnis der spektakulären Supernova, die im Jahre 1054 n. Chr. im Sternbild Stier aufleuchtete. Er hat 1,4 bis 2 Sonnenmassen und einen Durchmesser von nur 28 bis 30 km. Gemeinsam mit dem ihn umgebenden Krebsnebel gehört er zu den am besten untersuchten astronomischen Objekten (Abb. 1).

Astrophysiker gehen von der Existenz eines relativistischen Windes aus Elektronen und ihren Antiteilchen, den Positronen aus, welcher aus der Magnetosphäre des Krebspulsars entweicht und dann im interstellaren Medium endet. Die Entwicklung dieses Windes verläuft in drei aufeinanderfolgenden Phasen (Abb. 2): In etwa 1000 Kilometern Abstand vom Pulsar wird die Rotationsenergie des Pulsars in elektromagnetische Energie umgewandelt, die dann ihrerseits in Bewegungsenergie des Elektron-Positron-Plasmas konvertiert, der Wind also beschleunigt wird. Schließlich endet der Wind durch Kollision mit der umgebenden Materie in einer stehenden Schockwelle in etwa 0,3 Lichtjahren Entfernung. Dabei werden Elektronen und Positronen auf extrem hohe Energien beschleunigt und so die ausgedehnte nicht-thermische Strahlung des Krebsnebels verursacht. Um die beobachteten Daten erklären zu können, sollten alle drei Prozesse außerordentlich (fast 100%) effizient verlaufen.

Sowohl der Krebspulsar als auch der Krebsnebel sind starke Quellen im Gammastrahlenlicht, wobei der Pulsar im hohen und der Nebel vorwiegend im sehr hohen Energiebereich strahlen. Die dritte Schlüsselkomponente, der Wind, die den Energietransport vom Pulsar zum Nebel ermöglicht, scheint auf den ersten Blick jedoch eine ‘unsichtbare Substanz’ zu sein. Denn obwohl der Wind selbst relativistisch ist, sind im mitbewegten System die Elektronen „kalt”: sie weisen keine Relativbewegung zum Magnetfeld auf und emittieren daher keine Strahlung. Allerdings kann der Wind im Gammastrahlenlicht sichtbar werden, wenn Röntgen-Photonen aus der Magnetosphäre und/oder der Oberfläche des Neutronensterns durch die schnellen Elektronen und Positronen des Windes zu höheren Energien hin gestreut werden. Dieser Prozess wird inverse Compton-Streuung genannt. In einem Beitrag in Nature zeigen Felix Aharonian, Sergey Bogovalov und Dmitry Khangulyan, dass sich die neuesten überraschenden Entdeckungen gepulster sehr hochenergetischer Gammastrahlung durch die Tscherenkow-Teleskopsysteme VERITAS und MAGIC am besten über die inverse Compton-Streuung erklären lassen. Gepulste Röntgen-Photonen des Pulsars wechselwirken mit schnellen Elektronen des Windes vorwiegend in deren Beschleunigungszone. Der Wind ist somit die Quelle der gepulsten Gammastrahlung und erklärt die Beobachtungen mit nur drei Parametern: Beschleunigungsort des Windes, Endgeschwindigkeit und Anisotropie.

Wenn diese Erklärung zutrifft, dann liefert die Entdeckung gepulster, sehr hochenergetischer Gammastrahlung den ersten Beobachtungsnachweis für die Existenz eines kalten, ultraschnellen Elektron-Positron-Windes im Krebspulsar. Die Gammabeobachtungen ermöglichen eine gute Lokalisierung der Stelle, an der die elektromagnetische Energie des Windes in Bewegungsenergie umgewandelt wird, sowie eine gute Abschätzung der Geschwindigkeit, mit der dieser Übergang erfolgt. Die Ergebnisse zeigen eine nahezu plötzliche Beschleunigung des Windes auf ultra-relativistische Geschwindigkeiten in einem engen zylindrischen Abstandsbereich von 20-50 Tausend Kilometern um die Rotationsachse des Pulsars. Obwohl die gefundene, ultraschnelle Natur des Windes die allgemeine Grundvorstellung von Pulsarwinden unterstützt, bedeutet diese schnelle Umwandlung in einer engen Zone nicht allzu weit vom Pulsar entfernt eine Herausforderung für bestehende Modelle.

Originalveröffentlichung:
Abrupt acceleration of a 'cold' ultrarelativistic wind from the Crab pulsar
F. A. Aharonian, S. V. Bogovalov and D. Khangulyan
Nature, doi: 10.1038/nature10793
Kontakt:
Prof. Dr. Felix Aharonian
MPI für Kernphysik
Tel: (+49)6221-516-485
E-Mail: felix.aharonian (at) mpi-hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de/astrophysik/HEA/1024.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie