Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jenseits der Grenzen: Theoretiker berechnen Leistung der neuen Lasergeneration

07.01.2011
Kurz vor Baubeginn des Gebäudes für den weltweit leistungsstärksten Laser in der Nähe von Bukarest/Rumänien veröffentlichen Prof. Toshiki Tajima und Prof. Gerard Mourou in der aktuellen Ausgabe der Zeitschrift Science ihre neuen Berechnungen.

Tajima ist Professor an der Ludwig-Maximilians-Universtät München (LMU) und Mitglied im Exzellenzcluster "Munich-Centre for Advanced Photonics" und gilt als Vater der Beschleunigung von Teilchen durch Licht. Mourou ist Professor an der Ecole Polytechnique und Direktor des Institut de Lumière Extrême in Palaiseau und erfand die "Chirped Mirrors", die die Laserentwicklung entscheiden vorangetrieben haben. Beide arbeiten zusammen im europäischen Projekt "Extreme Light Infrastructure" (ELI).

Die beiden führenden Laserexperten kommen in ihrem Artikel zu einer erstaunlichen Schlussfolgerung, die sie sowohl theoretisch untermauern wie durch Simulation bestätigt haben. Bisher waren alle Experten davon ausgegangen, dass sich die kürzesten Pulse nur durch immer stärkere Laserleistung erzielen lassen. Der Zusammenhang, so fanden auch die beiden Wissenschaftler ist richtig, aber umgekehrt: Um die Grenze hin zu einer immer höheren Pulsintensität zu verschieben, muss die Pulsdauer kürzer werden. Einer der Meilensteine in der Laserentwicklung wurde erreicht, als die Pulsdauer 2,6 Femtosekunden (10-15 Sekunden) erreicht hat. Dieser Wert entspricht einer einzigen Lichtwelle des Titan-Saphir-Lasers. Für noch kürzere Pulse war eine neue Technik der Erzeugung von kohärentem Licht nötig. Der kurze Puls entsteht, indem ein kohärenter Femtosekundenstrahl im Vakuum Elektronen aus einem Gasatom schlägt, die dann ihre Energie in Form von extrem kurzwelligem Licht wieder abgeben. Mit dieser Technik erreichte Prof. Ferenc Krausz (LMU/Max-Planck-Institut für Quantenoptik) den Weltrekord von 80 Attosekunden (10-18 Sekunden) für einen Puls.

Mit der unvorstellbare Energie von 1018 Watt pro Quadratzentimeter gelten für die Theoretiker andere Gesetze, denn dann bewegen sich die Elektronen nicht mehr linear zur eingestrahlten Energie: Sie verhalten sich relativistisch und ändern ihre Masse im eingestrahlten Laserlicht. Ein energiereicher Laserpuls von wenigen Attosekunden erzeugt dann eine dünne fliegende Scheibe von Elektronen, die das Licht wie ein Spiegel reflektiert. Das so erzeugte Licht hat eine Wellenlänge, die im Bereich der harten Röntgen- oder gar Gammastrahlung liegt und kohärent ist.

Tajima und Mourou haben berechnet, dass dieser Puls eine Dauer von 100 Yoktosekunden (10-24 Sekunden) und eine Leistung von etwa 1024 Watt pro Quadratzentimeter haben wird. Der geplante ELI-Laser soll genau das erreichen: "ELI wird der Laser mit der weltweit höchsten Intensität werden" erläutert Mourou, der das europäische Großprojekt koordiniert.

"Mit dieser Leistung wird es möglich sein, sehr effektiv und auf kleinster Fläche Teilchen zu erzeugen und zu beschleunigen. Das ist nicht nur wissenschaftlich bei der Untersuchung des Vakuums höchst interessant, sondern bietet erstmals in der Geschichte der Menschheit die Möglichkeit zu sehen, was in einem Atomkern passiert" ergänzt Tajima.

DOI:10.1126/science.1200292

Christine Kortenbruck | idw
Weitere Informationen:
http://www.munich-photonics.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

nachricht ESO-Beobachtungen zeigen, dass der erste interstellare Asteroid mit nichts vergleichbar ist, was wir bisher kennen
21.11.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie