Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Informationsaustausch am Quantenlimit

02.05.2011
Ein einzelnes Photon überträgt sein Geheimnis auf ein einzelnes Atom.

Forschern um Prof. Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik und Leiter der Abteilung Quantendynamik, ist es jetzt erstmals gelungen, die in einem einzelnen Photon kodierte Quanteninformation auf ein einzelnes Atom zu übertragen, dort für eine gewisse Zeit abzuspeichern und anschließend wieder auszulesen (Nature, Advance Online Publication, DOI: 10.1038/nature09997, Mai 2011).


Mit schwachen Lichtpulsen wird die in einzelnen Photonen gespeicherte Quanteninformation auf ein einzelnes Rubidiumatom übertragen, gespeichert und von dort wieder ausgelesen. Andreas Neuzner, MPQ

„Damit verfügen wir über einen universellen Knoten für ein Quantennetzwerk“, begeistert sich Gerhard Rempe. Das Experiment öffnet neue Perspektiven für die Realisierung skalierbarer Quantennetzwerke, in denen Quanteninformation mittels Photonen über weite Strecken kommuniziert und zwischen mehreren Knoten verteilt wird.

Aufgrund der ständig fortschreitenden Miniaturisierung der für die Informationsspeicherung genutzten Strukturen werden mittlerweile Grenzen erreicht, an denen nicht mehr die Gesetze der klassischen Physik, sondern die der Quantenmechanik gelten. Der kleinste denkbare Speicherbaustein besteht nur noch aus einem einzelnen Atom, während die kleinste mögliche Einheit für die optische Datenkommunikation ein einzelnes Lichtquant (Photon) ist.

Darüber hinaus lassen sich die speziellen Eigenschaften der Quantenteilchen für neuartige Anwendungen nutzen, beispielsweise für die abhörsichere Datenübertragung (Quantenkryp-tographie). Dies erfordert allerdings die Entwicklung neuer Konzepte für die Übermittlung und Verarbeitung von Informationen. Ein erfolgversprechendes Konzept ist ein Netz aus miteinander kommunizierenden Quantenspeichern. Hier muss zum einen die in einem stationären Quantensystem enthaltene Quanteninformation auf ein Photon übertragen werden. Solch einen Sender für Lichtquanten basierend auf einem einzelnen Atom hat die Abteilung Quantendynamik bereits vor einigen Jahren realisiert. Zum anderen muss das photonische Quantenbit wieder in ein stationäres Speicherelement eingeschrieben und von dort möglichst unverfälscht wieder ausgelesen werden. Diesen Anforderungen genügten bisher nur Speicher auf Basis atomarer Ensembles aus mehreren tausend Teilchen, auf welche die Quanteninformation als kollektive Anregung abgebildet wird. Vorteilhafter ist es jedoch, die Information direkt zwischen einzelnen Quantenteilchen aus Licht bzw. Materie auszutauschen, die sich gezielt adressieren und manipulieren lassen. Dies würde praktische Anwendungen, z. B. in Quantencomputern, erleichtern.

Im vorliegenden Experiment wird erstmals ein einzelnes Rubidiumatom als Quantenspeicher genutzt. Um seine naturgemäß schwache Wechselwirkung mit einem einzelnen Photon zu erhöhen, fangen die Garchinger Physiker das Atom in einem aus zwei hochreflektierenden Spiegeln gebildeten optischen Resonator. Dort wird es mit Laserstrahlen festgehalten, während das einlaufende Photon etwa zwanzigtausendmal zwischen den Spiegeln hin und her läuft. Zunächst soll die in dem Lichtquant gespeicherte Quanteninformation auf das Atom übertragen werden. „Im Unterschied zu einem klassischen Bit, das eindeutig einen von zwei Werten, z.B. Null oder Eins repräsentiert, handelt es sich bei Quantenbits stets um eine kohärente Überlagerung aus zwei Quantenzuständen“, erklärt Dr. Holger Specht, Wissenschaftler am Experiment. „Dementsprechend kodieren wir das Photon durch eine kohärente Überlagerung aus zwei Polarisationszuständen, z.B. rechts- und linkszirkularer Polarisation.“

Lichtpulse aus einem Steuerlaser initiieren die Über-tragung der optischen Quanteninformation: das Atom geht in einen Zustand über, der – und dies ist der Trick – aus einer kohärenten Überlagerung zweier Unterniveaus besteht. Die relativen Anteile der beiden Unterzustände entsprechen dabei den jeweiligen Anteilen der beiden Polarisationszustände des Eingangs-photons. Auch das Auslesen des Photons erfolgt mithilfe des Steuerlasers. Nun läuft der Prozess in umgekehrter Reihenfolge ab und das photonische Quantenbit wird wieder freigesetzt. Die Effizienz dabei beträgt rund 10 Prozent. Mehrere Versuchsreihen, bei denen die Polarisationszustände des Photons variiert wurden, ergaben, dass die Übereinstim-mung mit dem Eingangsphoton immer bei über 90 Prozent liegt. „Das ursprüngliche Lichtquant wird mit unserem Verfahren weit besser reproduziert als es mit klassischen Messverfahren je möglich wäre“, erläutert Christian Nölleke, Doktorand am Experiment.

Sowohl in der Effizienz als auch in der Reproduzierbarkeit der Quanteninformation liegt das System gleichauf mit den besten Quantenspeichern weltweit, obschon die „Hardware“ nur aus einem einzigen Atom besteht. Gleichzeitig wird die fragile Quanteninformation fast 200 Mikro-sekunden lang gespeichert. Das übertrifft alle bisher mit optischen Quantenspeichern erreich-ten Werte. „Sowohl Reproduzierbarkeit als auch Speicherzeiten lassen sich durch eine Opti-mierung der experimentellen Randbedingungen sogar noch deutlich steigern“, betont Dr. Ste-phan Ritter, Wissenschaftler in der Abteilung Quantendynamik.

Im nächsten Schritt wollen die Wissenschaftler mit diesem Verfahren ein elementares Quan-tennetzwerk aus zwei miteinander kommunizierenden Knoten realisieren. Des Weiteren eignet sich der hier demonstrierte Speicherbaustein aufgrund seiner universellen Eigenschaften auch für die Entwicklung optischer Quantenrepeater und Quantengatter, die für die Übertragung von Quanteninformationen über große Distanzen und die Realisierung eines Quantencomputer benötigt werden. [Olivia Meyer-Streng]

Originalveröffentlichung:
Holger P. Specht, Christian Nölleke, Andreas Reiserer, Manuel Uphoff, Eden Figueroa, Ste-phan Ritter, and Gerhard Rempe
A Single-Atom Quantum Memory
Nature, Advance Online Publication, DOI: 10.1038/nature09997, Mai 2011
Kontakt:
Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Dr. Stephan Ritter
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 728
E-Mail: stephan.ritter@mpq.mpg.de
Dipl. Phys. Christian Nölleke
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 246
E-Mail: christian.noelleke@mpq.mpg.de
Dr. Olivia meyer-Streng
Presse & Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften