Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Informationsaustausch am Quantenlimit

02.05.2011
Ein einzelnes Photon überträgt sein Geheimnis auf ein einzelnes Atom.

Forschern um Prof. Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik und Leiter der Abteilung Quantendynamik, ist es jetzt erstmals gelungen, die in einem einzelnen Photon kodierte Quanteninformation auf ein einzelnes Atom zu übertragen, dort für eine gewisse Zeit abzuspeichern und anschließend wieder auszulesen (Nature, Advance Online Publication, DOI: 10.1038/nature09997, Mai 2011).


Mit schwachen Lichtpulsen wird die in einzelnen Photonen gespeicherte Quanteninformation auf ein einzelnes Rubidiumatom übertragen, gespeichert und von dort wieder ausgelesen. Andreas Neuzner, MPQ

„Damit verfügen wir über einen universellen Knoten für ein Quantennetzwerk“, begeistert sich Gerhard Rempe. Das Experiment öffnet neue Perspektiven für die Realisierung skalierbarer Quantennetzwerke, in denen Quanteninformation mittels Photonen über weite Strecken kommuniziert und zwischen mehreren Knoten verteilt wird.

Aufgrund der ständig fortschreitenden Miniaturisierung der für die Informationsspeicherung genutzten Strukturen werden mittlerweile Grenzen erreicht, an denen nicht mehr die Gesetze der klassischen Physik, sondern die der Quantenmechanik gelten. Der kleinste denkbare Speicherbaustein besteht nur noch aus einem einzelnen Atom, während die kleinste mögliche Einheit für die optische Datenkommunikation ein einzelnes Lichtquant (Photon) ist.

Darüber hinaus lassen sich die speziellen Eigenschaften der Quantenteilchen für neuartige Anwendungen nutzen, beispielsweise für die abhörsichere Datenübertragung (Quantenkryp-tographie). Dies erfordert allerdings die Entwicklung neuer Konzepte für die Übermittlung und Verarbeitung von Informationen. Ein erfolgversprechendes Konzept ist ein Netz aus miteinander kommunizierenden Quantenspeichern. Hier muss zum einen die in einem stationären Quantensystem enthaltene Quanteninformation auf ein Photon übertragen werden. Solch einen Sender für Lichtquanten basierend auf einem einzelnen Atom hat die Abteilung Quantendynamik bereits vor einigen Jahren realisiert. Zum anderen muss das photonische Quantenbit wieder in ein stationäres Speicherelement eingeschrieben und von dort möglichst unverfälscht wieder ausgelesen werden. Diesen Anforderungen genügten bisher nur Speicher auf Basis atomarer Ensembles aus mehreren tausend Teilchen, auf welche die Quanteninformation als kollektive Anregung abgebildet wird. Vorteilhafter ist es jedoch, die Information direkt zwischen einzelnen Quantenteilchen aus Licht bzw. Materie auszutauschen, die sich gezielt adressieren und manipulieren lassen. Dies würde praktische Anwendungen, z. B. in Quantencomputern, erleichtern.

Im vorliegenden Experiment wird erstmals ein einzelnes Rubidiumatom als Quantenspeicher genutzt. Um seine naturgemäß schwache Wechselwirkung mit einem einzelnen Photon zu erhöhen, fangen die Garchinger Physiker das Atom in einem aus zwei hochreflektierenden Spiegeln gebildeten optischen Resonator. Dort wird es mit Laserstrahlen festgehalten, während das einlaufende Photon etwa zwanzigtausendmal zwischen den Spiegeln hin und her läuft. Zunächst soll die in dem Lichtquant gespeicherte Quanteninformation auf das Atom übertragen werden. „Im Unterschied zu einem klassischen Bit, das eindeutig einen von zwei Werten, z.B. Null oder Eins repräsentiert, handelt es sich bei Quantenbits stets um eine kohärente Überlagerung aus zwei Quantenzuständen“, erklärt Dr. Holger Specht, Wissenschaftler am Experiment. „Dementsprechend kodieren wir das Photon durch eine kohärente Überlagerung aus zwei Polarisationszuständen, z.B. rechts- und linkszirkularer Polarisation.“

Lichtpulse aus einem Steuerlaser initiieren die Über-tragung der optischen Quanteninformation: das Atom geht in einen Zustand über, der – und dies ist der Trick – aus einer kohärenten Überlagerung zweier Unterniveaus besteht. Die relativen Anteile der beiden Unterzustände entsprechen dabei den jeweiligen Anteilen der beiden Polarisationszustände des Eingangs-photons. Auch das Auslesen des Photons erfolgt mithilfe des Steuerlasers. Nun läuft der Prozess in umgekehrter Reihenfolge ab und das photonische Quantenbit wird wieder freigesetzt. Die Effizienz dabei beträgt rund 10 Prozent. Mehrere Versuchsreihen, bei denen die Polarisationszustände des Photons variiert wurden, ergaben, dass die Übereinstim-mung mit dem Eingangsphoton immer bei über 90 Prozent liegt. „Das ursprüngliche Lichtquant wird mit unserem Verfahren weit besser reproduziert als es mit klassischen Messverfahren je möglich wäre“, erläutert Christian Nölleke, Doktorand am Experiment.

Sowohl in der Effizienz als auch in der Reproduzierbarkeit der Quanteninformation liegt das System gleichauf mit den besten Quantenspeichern weltweit, obschon die „Hardware“ nur aus einem einzigen Atom besteht. Gleichzeitig wird die fragile Quanteninformation fast 200 Mikro-sekunden lang gespeichert. Das übertrifft alle bisher mit optischen Quantenspeichern erreich-ten Werte. „Sowohl Reproduzierbarkeit als auch Speicherzeiten lassen sich durch eine Opti-mierung der experimentellen Randbedingungen sogar noch deutlich steigern“, betont Dr. Ste-phan Ritter, Wissenschaftler in der Abteilung Quantendynamik.

Im nächsten Schritt wollen die Wissenschaftler mit diesem Verfahren ein elementares Quan-tennetzwerk aus zwei miteinander kommunizierenden Knoten realisieren. Des Weiteren eignet sich der hier demonstrierte Speicherbaustein aufgrund seiner universellen Eigenschaften auch für die Entwicklung optischer Quantenrepeater und Quantengatter, die für die Übertragung von Quanteninformationen über große Distanzen und die Realisierung eines Quantencomputer benötigt werden. [Olivia Meyer-Streng]

Originalveröffentlichung:
Holger P. Specht, Christian Nölleke, Andreas Reiserer, Manuel Uphoff, Eden Figueroa, Ste-phan Ritter, and Gerhard Rempe
A Single-Atom Quantum Memory
Nature, Advance Online Publication, DOI: 10.1038/nature09997, Mai 2011
Kontakt:
Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Dr. Stephan Ritter
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 728
E-Mail: stephan.ritter@mpq.mpg.de
Dipl. Phys. Christian Nölleke
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 246
E-Mail: christian.noelleke@mpq.mpg.de
Dr. Olivia meyer-Streng
Presse & Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien
17.01.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie