„Hochkarätige“ Messergebnisse dank künstlicher Diamanten: Physiker entwickeln Magnetfeld-Sensor

Die Energie des „Spins“ eines so genannten Stickstoff-Fehlstellenzentrums ändert sich nämlich, sobald der Diamant in ein magnetisches Feld gerät. Diese Änderung des Energieniveaus kann mit optisch detektierter Mikrowellen-Spektroskopie einfach nachvollzogen werden. Spezielle Messprotokolle erlauben dann präzise Rückschlüsse auf die Stärke des Feldes.

Ihre Erkenntnisse haben die Wissenschaftler der Universitäten Ulm und Stuttgart sowie des Max-Planck-Instituts für Festkörperforschung (Stuttgart) und der australischen Macquarie University jetzt vorab auf der Webseite der renommierten Fachzeitschrift „Nature Nanotechnology“ veröffentlicht.

„Im Gegensatz zu unserem neuen Sensor funktionieren bisherige vergleichbare Messmethoden oft nur bei Tiefsttemperaturen oder im Vakuum“, erklärt Fedor Jelezko. Das Diamantgitter wirke als Schutzhülle, weswegen der jüngst entwickelte Sensor auch bei Raumtemperatur präzise arbeite. Ein weiterer Vorteil der Neuentwicklung: Der Diamanten-Sensor ist extrem klein und erlaubt bei hoher Empfindlichkeit und Ortsauflösung ungeahnte Einsichten in die „Nanowelt“. So könnten zum Beispiel Kernspins in biologischen Molekülen erfasst werden. Schon jetzt hat sich die Messgenauigkeit gegenüber bisherigen Methoden um ein Vielfaches erhöht: „Aufgrund der Heisenbergschen Unschärferelation haben wir jetzt die Grenze der Genauigkeit erreicht“, so Jelezko.

Während bisherige, mit millimetergroßen Diamanten durchgeführte Untersuchungen der Grundlagenforschung dienen, könnten kleinste Edelsteine schon bald die Atomkraftmikroskopie (AFM) verbessern. Und zwar, indem wenige Nanometer große Diamanten an der Spitze des AFM-Hebels präzise Messungen und somit etwa Strukturanalysen einzelner Moleküle ermöglichen.

Im Rahmen des Kooperationsprojekts haben die Wissenschaftler unter anderem einen Algorithmus entwickelt, mit dem die Eigenschaften eines solchen Sensors deutlich verbessert werden. Diese und andere Erkenntnisse ließen sich auf angrenzende Forschungsfelder übertragen, sagt Jelezko und meint zum Beispiel Bemühungen um einen extrem leistungsfähigen Quantencomputer.

Interdisziplinarität ist dem Direktor des Instituts für Quantenoptik ohnehin wichtig, handelt es sich doch um ein Forschungsprojekt, an dem das Zentrum für Integrierte Quantenwissenschaft und –technologie (IQ ST) beteiligt ist. In diesem Zentrum wollen Wissenschaftler der Universitäten Ulm und Stuttgart sowie des Stuttgarter Max-Planck-Instituts für Festkörperforschung die fächerübergreifende Zusammenarbeit in der Quantenwissenschaft stärken. Die Forscher sind vom Projekt SQTEC des Europäischen Forschungsrats (ERC), der Deutschen Forschungsgemeinschaft (DFG) sowie den EU-Projekten DIAMANT und SOLID gefördert worden.

Prof. Dr. Fedor Jelezko, Tel.: 0731/50-23750
Prof. Dr. Jörg Wrachtrup, Tel: 0711/685 65278

Media Contact

Annika Bingmann idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer