Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heidelberger Forscher erzeugen „gequetschtes“ Quantenvakuum gefüllt mit Atomen

02.12.2011
Basis ist eine neuartige Nachweismethode zur Messung bisher nicht zugänglicher Größen atomarer Gase

Die Quantentheorie ist bekannt für ihre befremdlichen Gesetzmäßigkeiten, die den fundamentalen Prinzipien der klassischen Physik zu widersprechen scheinen. Wissenschaftlern der Universität Heidelberg ist es nun gelungen, im Experiment einen besonderen Quantenzustand zwischen zwei mesoskopischen Gasen mit rund 500 Atomen zu erzeugen.


Bei Experimenten ist Rauschen üblicherweise unerwünscht, und die Herausforderung besteht darin, es zu minimieren. In diesem Fall dient das Rauschen als Signal, das das Vorhandensein einer Quantenverschränkung verrät. Obwohl die Zahl der Atome in den beiden Gasen (rot und blau dargestellt) extrem stark fluktuiert, ist deren Differenz (schwarz dargestellt) äußerst klein. Zur korrekten Analyse reichen wenige Experimente (links) nicht aus, sondern das Rauschen muss in langen Messreihen analysiert werden (rechts).
Abbildung: Kirchhoff-Institut für Physik

Dabei handelt es sich um ein sogenanntes „gequetschtes“ Vakuum, bei dem die Messung an einem Gas die Ergebnisse der Messungen an dem anderen Gas festlegt. Für den Nachweis musste das Team von Prof. Dr. Markus Oberthaler am Kirchhoff-Institut für Physik eine neuartige Nachweismethode zur Messung bisher nicht zugänglicher Größen atomarer Gase entwickeln. Die Forschungsergebnisse wurden in der Fachzeitschrift „Nature“ veröffentlicht.

Der von den Heidelberger Wissenschaftlern beobachtete Quantenzustand ist von besonderem Interesse, seit er 1935 von Einstein, Podolsky und Rosen (EPR) im Rahmen eines Gedankenexperiments benannt wurde. Die drei Forscher wollten damit zeigen, dass die Quantenmechanik nicht verträglich ist mit der Existenz lokaler Eigenschaften physikalischer Systeme, die sich experimentell beobachten lassen. Ein EPR-Szenario bezieht sich auf einen Zustand von zwei Systemen, die quantenverschränkt sind: Dabei wirkt sich die Messung des einen Systems unmittelbar auf das Ergebnis der Messung in dem anderen System aus – ein Fakt, der nach der traditionellen Denkweise unserer Alltagswelt nicht zu verstehen ist, denn hier existieren Gesetzmäßigkeiten der Physik unabhängig davon, ob sie beobachtet werden oder nicht.

Die Besonderheit des Quantenzustands, der von Prof. Oberthaler und seinem Team entdeckt und erzeugt wurde, liegt in der Quantenverschränkung von kontinuierlichen Variablen. Dies bedeutet, dass jeweils einzelne Messungen an beiden Gasen viele verschiedene Werte prinzipiell zufällig ergeben. Nach der Messung an einem Gas aber lassen sich alle weiteren Messungen am zweiten – verschränkten – Gas exakt vorhersagen. Um ein „gequetschtes“ Quantenvakuum mit seinen besonderen Eigenschaften im Labor realisieren und nachweisen zu können, arbeiteten die Wissenschaftler mit einem Bose-Einstein-Kondensat. Beschrieben wird damit ein extremer Aggregatzustand eines Systems ununterscheidbarer Teilchen, die sich überwiegend im selben quantenmechanischen Zustand befinden. Eingesetzt wurde ein Kondensat aus Rubidium-Atomen bei ultrakalten Temperaturen von 0,0000001 Kelvin über dem absoluten Temperaturnullpunkt.

„Unser Versuchsaufbau musste außerordentlich stabil sein, da wir Messungen über viele Tage hinweg non-stop durchgeführt haben, um mit den Daten die Erzeugung einer Quantenverschränkung belegen zu können“, erläutert Prof. Oberthaler. Dazu mussten die Wissenschaftler die Stabilität von Magnetfeldern gewährleisten, die 10.000 Mal kleiner ist als die des Magnetfeldes der Erde. Eine weitere Voraussetzung war die Realisierung eines Gases, das aus 500 Atomen mit einer Fehlertoleranz von weniger als acht Atomen besteht, denn das Teilchenrauschen diente als Signal für eine erfolgreich generierte Verschränkung. Prof. Oberthaler: „Bei Experimenten ist Rauschen üblicherweise unerwünscht, doch in unseren Forschungsarbeiten lieferte die sorgfältige Untersuchung des Rauschens den Beleg für das Vorhandensein einer Quantenverschränkung.“ Für die Heidelberger Wissenschaftler bestand die Herausforderung darin, das technische Rauschen so weit zu unterdrücken, dass das Quantenrauschen beobachtbar wurde.

Von den Forschungsergebnissen erhoffen sich Prof. Oberthaler und sein Team eine Anwendung für präzise Atominterferometrie, sehen die Erkenntnisse aber auch als wichtigen Schritt zur Untersuchung fundamentaler Fragen über quantenmechanische Verschränkung von massiven Teilchen.

Informationen im Internet können unter www.kip.uni-heidelberg.de/matterwaveoptics abgerufen werden.

Originalpublikation:
C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G. Kurizki and M.K. Oberthaler: Atomic homodyne detection of continuous variable entangled twin-atom states. Nature online, 30. November 2011, doi: 10.1038/nature10654
Kontakt:
Prof. Dr. Markus Oberthaler
Kirchhoff-Institut für Physik
Telefon (06221) 54-5170
markus.oberthaler@kip.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie