Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hautkrebsprävention: Das Känguru macht’s vor

01.12.2009
Physiker liefern neue Einblicke in die Reparaturmechanismen von DNA-Schäden

Gemeinsam mit australischen Wissenschaftlern haben Innsbrucker Ionenphysiker um Prof. Paul Scheier im Labor die Reparatur von Schäden am Erbgut genauer untersucht. Ein besseres chemisches Verständnis dieses natürlichen Prozesses könnte helfen, Krebserkrankungen vorzubeugen. Die Forscher berichten darüber in der Fachzeitschrift Chemical Communications.

Das australische Känguru besitzt – wie viele andere Organismen, Pflanzen und Tiere – ein spezielles Enzym (Photolyase), das durch UV-Strahlung verursachte Schäden an der DNA reparieren kann. Beim Menschen wurde dieses Enzym im Laufe der Evolution durch ein anderes Reparaturverfahren ersetzt.

Weil aber Photolyase derartige Schädigungen durch UV-Strahlung sehr effektiv beheben kann, haben Wissenschaftler des Instituts für Ionenphysik und Angewandte Physik der Universität Innsbruck gemeinsam mit Kollegen des ARC Centre of Excellence for Free Radical Chemistry and Biotechnology an der Universität Melbourne in Australien diesen Reparaturmechanismus genauer untersucht.

Im Labor simuliert

Schäden an der DNA entstehen durch UV-Strahlung, wenn sich zwei benachbarte Thymine – Grundbausteine der DNA – fest miteinander verbinden und ein Molekül bilden. Dadurch wird die Vervielfältigung der Erbinformation verhindert und es entstehen Mutationen, die wiederum Krebserkrankungen auslösen können. Das Enzym Photolyase kann unter Lichteinwirkung diese Moleküle wieder spalten und die DNA reparieren. Diesen speziellen Mechanismus haben die Forscher aus Innsbruck und Melbourne nun mit Hilfe von Massenspektrometern im Labor genauer untersucht. Unter idealtypischen Bedingungen konnten sie dabei die chemischen Reaktionen bei der Aufspaltung der Thymine beobachten. „Wir waren sehr überrascht, dass der DNA-Reparaturmechanismus auch einige chemische Nebenprodukte erzeugt, die wir bisher nicht gesehen haben“, erläutern Uta Wille und Paul Scheier, die Leiter der beiden Forschungsgruppen. „Wir wollen diese Produkte nun weiter studieren, um zu verstehen, ob dieses Reparaturenzym etwas zu einer sicheren und effektiven Präventionsstrategie gegen Hautkrebs beitragen kann.“

Hautcreme gegen DNA-Schäden

Am Ende dieser Untersuchungen könnte eine Creme stehen, die Menschen nach dem Sonnenbad auf die Haut auftragen und die entstandene Schäden am Erbgut wieder repariert. „Dafür ist es allerdings noch viel zu früh. Zunächst müssen diese Mechanismen noch besser verstanden werden“, betonen die Wissenschaftler. Ihre gemeinsame Forschungsarbeit wurde nun in der Fachzeitschrift Chemical Communications als „hot paper“ veröffentlicht. Unterstützt wurden die Forscher vom österreichischen Wissenschaftsfonds FWF, der Österreichischen Akademie der Wissenschaften, der Europäischen Kommission und dem Australien Research Council.

An der Schnittstelle von Physik und Medizin

Wechselwirkungen zwischen Elektronen und den Bausteinen des Lebens – ein Brückenschlag zwischen Physik und Medizin – sind ein wichtiger Schwerpunkt der Forschungsgruppe um Paul Scheier am Institut für Ionenphysik und Angewandte Physik der Universität Innsbruck. Das hier erarbeitete Wissen kann einerseits zur Vermeidung von Strahlenschäden nützlich sein. Es kann aber auch bei der Behandlung von Krankheiten mit Hilfe von Strahlentherapie helfen, schädliche Nebeneffekte zu minimieren.

Publikation: Formation of pyrimidine dimer radical anions in the gas phase. Achim Edtbauer, Katherine Russell, Linda Feketeová, Jörg Taubitz, Christian Mitterdorfer, Stephan Denifl, Richard A. J. OHair, Tilmann D. Märk, Paul Scheier and Uta Wille. Chem. Commun., 2009, 7291-3.

http://dx.doi.org/10.1039/b920282j

Kontakt:
Univ.-Prof. Dr. Paul Scheier
Institut für Ionenphysik und Angewandte Physik
Technikerstrasse 25, A-6020 Innsbruck
Telefon: +43 (0) 512/507 6243
Mail: paul.scheier@uibk.ac.at
Mag.a Gabriele Rampl
Public Relations Ionenphysik
Telefon: +43(0)650/2763351
Mail: office@scinews.at

Gabriele Rampl | scinews.at
Weitere Informationen:
http://www.scinews.at
http://www.uibk.ac.at/ionen-angewandte-physik/media/photos.html
http://www.uibk.ac.at/ionen-angewandte-physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics