Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Harmonie im Reaktor: RUB-Physiker entwickeln wegweisende Technologie für Plasmareaktoren

07.06.2011
Ausgezeichnet: Ionenfluss und Ionenenergie lassen sich unabhängig einstellen

Mehr wissenschaftliches Verständnis und eine neue Technologie zur Prozesskontrolle können jetzt in die industrielle Anwendung von Plasmen einfließen. Während seiner Promotion am Lehrstuhl für Plasma- und Atomphysik gewann Dr. Julian Schulze neue Einblicke in die Physik technologischer Plasmen, die u. a. entscheidend für die Herstellung von Computerchips und Solarzellen sind.


Kapazitives Radiofrequenz-Plasma

Durch eine Kombination verschiedener Diagnostikverfahren, analytischer Modelle und Simulationsrechnungen konnte Dr. Schulze das Verständnis der komplexen Physik in diesen Plasmen entscheidend voranbringen und deren technologische Anwendungen verbessern. Für seine ausgezeichnete Dissertation erhält er im Sommer den PhD Research Award von der Plasma Division der European Physical Society.

Technologische Plasmen wichtig für viele Anwendungen

Bei den Plasmareaktoren, die Dr. Schulze im Rahmen seiner Dissertation untersuchte, handelt es sich um sogenannte kapazitiv gekoppelte Radiofrequenz-Plasmen. Wie bei einem Kondensator (engl.: capacitor) bestehen diese Reaktoren aus zwei Elektroden in einer Vakuumkammer, in die kontrolliert kleine Mengen Gas einströmen. Eine der Elektroden ist geerdet, an der anderen liegt eine Wechselspannung (Radiofrequenz) an. Die starken elektrischen Felder vor den Elektroden beschleunigen positiv geladene Teilchen (Ionen) senkrecht zur Elektrode hin. Anwender in der Industrie leiten Ätz- oder Beschichtungsvorgänge ein, indem sie ein Material auf die Elektrode auflegen und es von den auftreffenden Ionen und Neutralteilchen bearbeiten lassen. Hersteller von Computerchips ätzen durch Ionenbeschuss mit hoher Energie z. B. viele kleine Kanäle in das Material. Bei der Solarzellenproduktion hingegen ist eine niedrige Ionenenergie gefragt, aber dafür ein hoher Ionenfluss.

Mehr Wissenschaft statt Ausprobieren

Ionenfluss und Ionenenergie stellen die Anwender meist nach dem „Trial-and-Error-Prinzip“ (Versuch und Irrtum) ein, da einige der grundlegenden Mechanismen der Plasmaentstehung noch nicht verstanden sind. Eine offene Frage ist etwa, wie den Elektronen im Reaktor die Energie zugeführt wird, die nötig ist, um das Gas zu ionisieren und so das Plasma zu erzeugen. Zu dieser Diskussion trägt Dr. Schulze in seiner Dissertation maßgeblich bei, indem er klärt, wie sich bei niedrigen Drücken Plasmen bilden (wir berichteten im Juni 2009, http://www.pm.ruhr-uni-bochum.de/pm2009/msg00187.htm). Darüber hinaus entwickelte er gemeinsam mit anderen Wissenschaftlern der Physik und Elektrotechnik an der Ruhr-Universität Bochum einen neuen Plasmatyp, der eine wesentlich gezieltere Kontrolle von Ionenfluss und -energie erlaubt als bisher.

Frequenzkopplung macht Probleme

Die Hersteller von Computerchips, Solarzellen und vielen weiteren Produkten verwenden sogenannte „dual frequency“-Plasmen mit dem Ziel, Ionenfluss und Ionenenergie unabhängig voneinander wählen zu können. In Zusammenarbeit mit Dr. Zoltán Donkó von der Ungarischen Akademie der Wissenschaften zeigte Dr. Schulze jedoch, dass es in herkömmlichen Plasmen, die mit zwei sehr unterschiedlichen Radiofrequenzen betrieben werden, eine starke Kopplung zwischen den beiden Frequenzen gibt. Diese Frequenzkopplung führt dazu, dass sich Ionenfluss und -energie im Plasmareaktor nicht wie gewünscht separat einstellen lassen.

Neuer Plasmatyp für besser kontrollierbare Reaktoren

Um Ionenfluss und -energie wirklich unabhängig voneinander steuern zu können, erforschte Dr. Schulze gemeinsam mit Prof. Dr. Uwe Czarnetzki, Prof. Dr. Ralf Peter Brinkmann, PD Dr.-Ing. Thomas Mussenbrock, Dr. Brian Heil und M.Sc. Edmund Schüngel einen neuen Plasmatyp, der bisher nur theoretisch vorhergesagt war und auf dem sogenannten Elektrischen Asymmetrie-Effekt beruht. Anders als in den bislang verwendeten „dual frequency“-Plasmen setzten die RUB-Physiker zwei ähnliche Radiofrequenzen ein, wobei die zweite Frequenz doppelt so groß war wie die erste (Grundfrequenz und zweite harmonische). Indem sie die Phasenverschiebung einstellten, konnten sie Ionenfluss und -energie nahezu unabhängig voneinander bestimmen. Diese patentierte Technologie löst viele Probleme klassischer Plasmareaktoren und Firmen wie Leyboldt Optics und Bosch nutzen sie inzwischen zur Solarzellenproduktion.

Angeklickt:

Dissertation von Dr. Julian Schulze
http://www.ep5.rub.de/pdfs/doktorarbeiten/phd_thesis_schulze.pdf
Lehrstuhl für Plasma- und Atomphysik (Prof. Dr. Uwe Czarnetzki)
http://www.ep5.rub.de
Lehrstuhl für theoretische Elektrotechnik (Prof. Dr. Ralf Peter Brinkmann)
http://www.tet.rub.de/
Informationen zum Patent
http://www.rubitec-patente.de/uploads/tx_nfpatents/81_RFPlasma_4.pdf
Informationen zum EPS PhD Award
http://plasma.ciemat.es/phd.shtml
Weitere Informationen
Dr. Julian Schulze, Lehrstuhl für Atom- und Plasmaphysik, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, Tel. 0234/32-26034

Julian.Schulze@ep5.rub.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie