Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Harmonie im Reaktor: RUB-Physiker entwickeln wegweisende Technologie für Plasmareaktoren

07.06.2011
Ausgezeichnet: Ionenfluss und Ionenenergie lassen sich unabhängig einstellen

Mehr wissenschaftliches Verständnis und eine neue Technologie zur Prozesskontrolle können jetzt in die industrielle Anwendung von Plasmen einfließen. Während seiner Promotion am Lehrstuhl für Plasma- und Atomphysik gewann Dr. Julian Schulze neue Einblicke in die Physik technologischer Plasmen, die u. a. entscheidend für die Herstellung von Computerchips und Solarzellen sind.


Kapazitives Radiofrequenz-Plasma

Durch eine Kombination verschiedener Diagnostikverfahren, analytischer Modelle und Simulationsrechnungen konnte Dr. Schulze das Verständnis der komplexen Physik in diesen Plasmen entscheidend voranbringen und deren technologische Anwendungen verbessern. Für seine ausgezeichnete Dissertation erhält er im Sommer den PhD Research Award von der Plasma Division der European Physical Society.

Technologische Plasmen wichtig für viele Anwendungen

Bei den Plasmareaktoren, die Dr. Schulze im Rahmen seiner Dissertation untersuchte, handelt es sich um sogenannte kapazitiv gekoppelte Radiofrequenz-Plasmen. Wie bei einem Kondensator (engl.: capacitor) bestehen diese Reaktoren aus zwei Elektroden in einer Vakuumkammer, in die kontrolliert kleine Mengen Gas einströmen. Eine der Elektroden ist geerdet, an der anderen liegt eine Wechselspannung (Radiofrequenz) an. Die starken elektrischen Felder vor den Elektroden beschleunigen positiv geladene Teilchen (Ionen) senkrecht zur Elektrode hin. Anwender in der Industrie leiten Ätz- oder Beschichtungsvorgänge ein, indem sie ein Material auf die Elektrode auflegen und es von den auftreffenden Ionen und Neutralteilchen bearbeiten lassen. Hersteller von Computerchips ätzen durch Ionenbeschuss mit hoher Energie z. B. viele kleine Kanäle in das Material. Bei der Solarzellenproduktion hingegen ist eine niedrige Ionenenergie gefragt, aber dafür ein hoher Ionenfluss.

Mehr Wissenschaft statt Ausprobieren

Ionenfluss und Ionenenergie stellen die Anwender meist nach dem „Trial-and-Error-Prinzip“ (Versuch und Irrtum) ein, da einige der grundlegenden Mechanismen der Plasmaentstehung noch nicht verstanden sind. Eine offene Frage ist etwa, wie den Elektronen im Reaktor die Energie zugeführt wird, die nötig ist, um das Gas zu ionisieren und so das Plasma zu erzeugen. Zu dieser Diskussion trägt Dr. Schulze in seiner Dissertation maßgeblich bei, indem er klärt, wie sich bei niedrigen Drücken Plasmen bilden (wir berichteten im Juni 2009, http://www.pm.ruhr-uni-bochum.de/pm2009/msg00187.htm). Darüber hinaus entwickelte er gemeinsam mit anderen Wissenschaftlern der Physik und Elektrotechnik an der Ruhr-Universität Bochum einen neuen Plasmatyp, der eine wesentlich gezieltere Kontrolle von Ionenfluss und -energie erlaubt als bisher.

Frequenzkopplung macht Probleme

Die Hersteller von Computerchips, Solarzellen und vielen weiteren Produkten verwenden sogenannte „dual frequency“-Plasmen mit dem Ziel, Ionenfluss und Ionenenergie unabhängig voneinander wählen zu können. In Zusammenarbeit mit Dr. Zoltán Donkó von der Ungarischen Akademie der Wissenschaften zeigte Dr. Schulze jedoch, dass es in herkömmlichen Plasmen, die mit zwei sehr unterschiedlichen Radiofrequenzen betrieben werden, eine starke Kopplung zwischen den beiden Frequenzen gibt. Diese Frequenzkopplung führt dazu, dass sich Ionenfluss und -energie im Plasmareaktor nicht wie gewünscht separat einstellen lassen.

Neuer Plasmatyp für besser kontrollierbare Reaktoren

Um Ionenfluss und -energie wirklich unabhängig voneinander steuern zu können, erforschte Dr. Schulze gemeinsam mit Prof. Dr. Uwe Czarnetzki, Prof. Dr. Ralf Peter Brinkmann, PD Dr.-Ing. Thomas Mussenbrock, Dr. Brian Heil und M.Sc. Edmund Schüngel einen neuen Plasmatyp, der bisher nur theoretisch vorhergesagt war und auf dem sogenannten Elektrischen Asymmetrie-Effekt beruht. Anders als in den bislang verwendeten „dual frequency“-Plasmen setzten die RUB-Physiker zwei ähnliche Radiofrequenzen ein, wobei die zweite Frequenz doppelt so groß war wie die erste (Grundfrequenz und zweite harmonische). Indem sie die Phasenverschiebung einstellten, konnten sie Ionenfluss und -energie nahezu unabhängig voneinander bestimmen. Diese patentierte Technologie löst viele Probleme klassischer Plasmareaktoren und Firmen wie Leyboldt Optics und Bosch nutzen sie inzwischen zur Solarzellenproduktion.

Angeklickt:

Dissertation von Dr. Julian Schulze
http://www.ep5.rub.de/pdfs/doktorarbeiten/phd_thesis_schulze.pdf
Lehrstuhl für Plasma- und Atomphysik (Prof. Dr. Uwe Czarnetzki)
http://www.ep5.rub.de
Lehrstuhl für theoretische Elektrotechnik (Prof. Dr. Ralf Peter Brinkmann)
http://www.tet.rub.de/
Informationen zum Patent
http://www.rubitec-patente.de/uploads/tx_nfpatents/81_RFPlasma_4.pdf
Informationen zum EPS PhD Award
http://plasma.ciemat.es/phd.shtml
Weitere Informationen
Dr. Julian Schulze, Lehrstuhl für Atom- und Plasmaphysik, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, Tel. 0234/32-26034

Julian.Schulze@ep5.rub.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops