Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grünes Licht vom Laser

27.06.2012
Konstanzer Physiker und die Firma Trumpf Laser schaffen erneuten Laser-Weltrekord

Bei der Impulsenergie waren sie zuvor bereits Weltmeister, jetzt haben sie auch im Bereich Ausgangsleistung die Spitze erreicht: Im Zentrum für Angewandte Photonik (CAP) an der Universität Konstanz, und da speziell in der Arbeitsgruppe von Prof. Dr. Thomas Dekorsy, wurde in Zusammenarbeit mit der Firma Trumpf Laser GmbH + Co. KG ein Laser weiterentwickelt, mit dem die beiden Kooperationspartner bereits vor vier Jahren Rekorde gebrochen haben.

Nun konnte die Ausgangsleistung auf 145 Watt und die Impulsenergie auf 41 Mikrojoule gesteigert werden. Mit dieser Weiterentwicklung könnte – neben dem Einsatz in der Grundlagenforschung – unter anderem auch die Solarzellenherstellung weiter optimiert werden. Die Ergebnisse wurden bei der Open-Access-Zeitschrift „Optics Express“ veröffentlicht.

Der Laser sendet Impulse aus, die die Dauer einer Pikosekunde haben, das sind 10^-12 Sekunden. In dieser kurzen Zeitspanne legt ein Überschallflugzeug das Tausendstel eines Haardurchmessers zurück. Der neue Laser mit 145 Watt Ausgangsleistung ermöglicht eine verbesserte Frequenzkonversion. Wenn ein Pikosekunden-Laserimpuls mit dieser Leistung und der Wellenlänge eines Mikrometers, das sind 10^-6 Meter, durch einen nichtlinear-optischen Kristall geschickt wird, wird die Wellenlänge halbiert oder die Frequenz verdoppelt. Aus dem Kristall tritt – anstatt des anfänglichen unsichtbaren Lichts – grünes Licht, das immer noch fast 100 Watt Leistung besitzt. Möglich ist sogar, durch einen weiteren Kristall die Frequenz zu verdreifachen, wodurch der ultraviolette Spektralbereich erreicht wird.

Das grüne Licht des Lasers könnte etwa bei der Solarzellenfertigung einen enormen Entwicklungsschub befördern. Das grüne Licht wird viel besser vom Silizium absorbiert als das nicht sichtbare Licht, was eine deutlich effektivere Bearbeitung zur Folge hat. „Entscheidend bei der Anwendung ist, wie viel Energie solch ein Impuls hat und dass die ganze Energie in dem kurzen Impuls gebündelt ist. Mit unserem Laserstrahl fliegt das Material einfach weg, ohne das Material zu erhitzen“, erklärt Thomas Dekorsy, was beispielsweise beim Ziehen der Isolationsgräben oder dem elektrischen Kontaktieren auf Siliziumscheiben passieren würde, käme der neue Laser zum Einsatz. Außerdem würde sich die Produktionszeit verkürzen und die Bearbeitungsqualität verbessern. Zum Vergleich: Die Leistung des grünen Lichts entspricht 100.000 Laserpointern, gebündelt in einem einzigen Strahl.

Dominik Bauer, Mitarbeiter an der Professur Dekorsy, hat in der Niederlassung der Firma Trumpf in Schramberg im Rahmen seiner Doktorarbeit an der Weiterentwicklung des Lasers gearbeitet. Die technische Plattform der Firma, die langjährige Erfahrung in der Laserentwicklung hat, bilden speziell von ihr entwickelte Laserscheiben. Der Anteil, den Dominik Bauer vor Ort in die Entwicklungsarbeiten eingebracht hat, ist technischer und grundlagentheoretischer Natur. Letzteres gehört vor allem in den Bereich der nichtlinearen Optik. „Bei den realisierten Lichtleistung verhält sich Luft nicht mehr wie ein einfaches Medium, durch das ein Laserstrahl durchgeht, sondern der Brechungsindex der Luft verändert sich durch den Laserstrahl“, stellt Dominik Bauer die Schwierigkeit dar. Folge ist, dass der sehr kurze Laserimpuls in der Luft „auseinanderlaufen“ und damit seine Effektivität, die gerade auf seiner Kürze liegt, verlieren würde. Dieser Effekt, der sich im Laser selbst abspielt, wird durch spezielle Spiegel, die in dem neuen Laser nochmals verbessert wurden, wieder rückgängig gemacht. „Natürlich ist die bei Trumpf entwickelte Technologie ein wichtiger Aspekt bei der Weiterentwicklung des Lasers“, sagt Dominik Bauer.

Das Centrum für Angewandte Photonik an der Universität Konstanz hat sich zum Ziel gesetzt, in industriellen Kooperationen Grundlagenforschung in Produktentwicklungen umzusetzen. „In den optischen Technologien laufen grundlegende Neuentwicklungen sehr schnell ab. Jede Anwendung, die mit Lasern durchführbar ist, wird auch mit Lasern gemacht werden. Eine sauberere und bessere Verarbeitungsmethode gibt es nicht“, so Thomas Dekorsy.

Originalveröffentlichung: D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, T. Dekorsy: „Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion", Optics Express 20, 9698, (2012)

http://www.opticsinfobase.org/oe/home.cfm

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de
http://www.uni-konstanz.de
Prof. Dr. Thomas Dekorsy
Universität Konstanz
AG Moderne Optik und Photonik
Fachbereich Physik
Universitätsstraße 10
78457 Konstanz
Telefon: 07531 / 88-3820
Thomas.Dekorsy@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.uni-konstanz.de
http://www.opticsinfobase.org/oe/home.cfm

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise