Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grenzübertritt in die Quantenwelt

30.01.2012
Am Atominstitut der TU Wien gelang es erstmals, Quanten-Korrelationen von Atomen zu messen, während sie ein ultrakaltes Bose-Einstein-Kondensat bilden. Dabei stellt sich der Übergang von klassischer Physik zur Quantenmechanik komplexer dar als bisher angenommen.

Es ist der kälteste Materiezustand, den es gibt: Ein Bose-Einstein-Kondensat besteht aus Atomen, die sich bei einer kritischen Temperatur knapp über dem absoluten Nullpunkt zu einem einzigen, rein quantenphysikalischen Objekt vereinen.


Ein Bose-Einstein-Kondensat fällt nach unten, expandiert dabei und wird in einer dünnen Schicht aus Licht vermessen. TU Wien

Nun ist es der Forschungsgruppe von Professor Jörg Schmiedmayer erstmals gelungen, im Experiment zu untersuchen, wie genau der Übergang von einem klassischen Gas zu einem quantenphysikalischen Bose-Einstein-Kondensat vor sich geht. Wie sich herausstellte machen Wechselwirkungen zwischen den Teilchen die Beschreibung dieses Überganges komplizierter als bisher vermutet wurde. Die Ergebnisse der Messung wurden nun im Fachjournal „Nature Physics“ veröffentlicht.

Vom Einzel-Atom zur kollektiven Quanten-Welle

„Auf unter ein Millionstel Grad über dem absoluten Nullpunkt müssen unsere Rubidium-Atome abgekühlt werden, um ein Bose-Einstein-Kondensat zu erzeugen“, sagt Professor Jörg Schmiedmayer vom Vienna Center for Quantum Science and Technology (VCQ) und Vorstand des Atominstitutes an der TU Wien. In einem gewöhnlichen, klassischen Atom-Gas haben alle Teilchen unterschiedliche Geschwindigkeiten und befinden sich an unterschiedlichen Orten. Quantenphysikalisch kann man sie alle durch unterschiedliche Quanten-Wellen beschreiben. Knapp über dem absoluten Nullpunkt nehmen allerdings fast alle Teilchen, sofern sie Bosonen sind, denselben Quanten-Zustand ein - den Zustand mit der geringstmöglichen Energie.

In einem solchen Bose-Einstein-Kondensat schwingen daher alle Quanten-Wellen exakt im Gleichklang, in einer einzigen große Quantenwelle, in der die einzelnen Atome ihre Individualität völlig verlieren. Etwas Ähnliches passiert mit Lichtteilchen in einem Laser: Auch dort schwingen die einzelnen Lichtquanten genau im Gleichschritt und ergeben gemeinsam eine einzige Quanten-Welle.

Bisher nur mit Licht – jetzt mit Atomen

„Unsere Messungen sind eng mit den berühmten Hanbury-Brown-Twiss-Experiment verwandt, mit dem man vor mehr als 50 Jahren die Quanteneigenschaften von Licht untersuchte“, erklärt Aurelien Perrin, Erstautor der Veröffentlichung. In diesem Experiment wird ein mathematischer Zusammenhang zwischen den Aufenthaltsorten der Teilchen untersucht – die sogenannte Korrelationsfunktion. Mit ihr lässt sich Quanten-Licht von gewöhnlichen klassischen Licht unterscheiden: Das Licht einer gewöhnlichen Glühbirne ergibt den Wert 2, bei Laserlicht hat diese Korrelationsfunktion den Wert 1. Eine ganz ähnliche Untersuchung wurde nun mit den Atomen an der Schwelle zur Bose-Einstein-Kondensation durchgeführt. Wenn man die Teilchen zu verschiedenen Zeitpunkten untersucht, während sich aus ihnen ein Bose-Einstein-Kondensat bildet, lässt sich nach der Hanbury-Brown-Twiss-Methode messen, wie stark die quantenphysikalischen Korrelationen zwischen den Teilchen ausgeprägt sind und wie sie sich zeitlich entwickeln.

Überraschende Wechselwirkungen

„Nachdem der Zustand von Atomen im Bose-Einstein-Kondensat dem Zustand von Lichtteilchen im Laserstrahl sehr ähnlich ist, hätte man erwartet, auch ähnliche Hanbury-Brown-Twiss-Korrelationen zu messen. Vorhergesagt wird eine flache Verteilung beim Wert 1, was bedeutet, dass die Wahrscheinlichkeit, zwei Teilchen zu detektieren, überall gleich groß ist“, erklärt Aurelien Perrin. Der Übergang in die Quantenwelt erfolgt dabei sehr rasch. Überraschenderweise wurde aber ein langsamer und komplexer Übergang und ein Korrelationsfunktion mit Werten kleiner als 1 gemessen – ein völlig unerwartetes Ergebnis. „Zuerst haben viele Leute geglaubt, wir hätten einfach einen Fehler gemacht“, schmunzelt Jörg Schmiedmayer, „doch wir konnten zeigen, dass dieses Verhalten durch die komplizierte Wechselwirkung zwischen den Atomen entsteht und sogar schon in den bestehenden Theorien versteckt war“.

In einem Bose-Einstein-Kondensat sind nicht ausnahmslos alle Atome im allertiefsten Energiezustand – ein paar Ausreißer gibt es immer. Und diese Atome, die noch ein kleines bisschen mehr Energie haben als der Rest, sind dafür verantwortlich, dass sich das Bose-Einstein-Kondensat doch anders verhält, als das Licht in einem Laserstrahl. Selbst bei unglaublich kalten 50 Nanokelvin (50 Milliardstel Grad über dem absoluten Nullpunkt) war dieser Effekt noch zu sehen. „Bose-Einstein-Kondensate sind mittlerweile auf der ganzen Welt zu höchst gefragten Versuchsobjekten für Quanten-Experimente geworden. Diese Messungen sind ein wichtiger Beitrag, unser Verständnis von diesen ultrakalten Objekten zu vertiefen“, meint Jörg Schmiedmayer.

Rückfragehinweise:

Prof. Thorsten Schumm
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
+43 (1) 58801 - 141 896
thorsten.schumm@tuwien.ac.at

Prof. Jörg Schmiedmayer
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
+43-1-58801-141801
hannes-joerg.schmiedmayer@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2212.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie