Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grenzübertritt in die Quantenwelt

30.01.2012
Am Atominstitut der TU Wien gelang es erstmals, Quanten-Korrelationen von Atomen zu messen, während sie ein ultrakaltes Bose-Einstein-Kondensat bilden. Dabei stellt sich der Übergang von klassischer Physik zur Quantenmechanik komplexer dar als bisher angenommen.

Es ist der kälteste Materiezustand, den es gibt: Ein Bose-Einstein-Kondensat besteht aus Atomen, die sich bei einer kritischen Temperatur knapp über dem absoluten Nullpunkt zu einem einzigen, rein quantenphysikalischen Objekt vereinen.


Ein Bose-Einstein-Kondensat fällt nach unten, expandiert dabei und wird in einer dünnen Schicht aus Licht vermessen. TU Wien

Nun ist es der Forschungsgruppe von Professor Jörg Schmiedmayer erstmals gelungen, im Experiment zu untersuchen, wie genau der Übergang von einem klassischen Gas zu einem quantenphysikalischen Bose-Einstein-Kondensat vor sich geht. Wie sich herausstellte machen Wechselwirkungen zwischen den Teilchen die Beschreibung dieses Überganges komplizierter als bisher vermutet wurde. Die Ergebnisse der Messung wurden nun im Fachjournal „Nature Physics“ veröffentlicht.

Vom Einzel-Atom zur kollektiven Quanten-Welle

„Auf unter ein Millionstel Grad über dem absoluten Nullpunkt müssen unsere Rubidium-Atome abgekühlt werden, um ein Bose-Einstein-Kondensat zu erzeugen“, sagt Professor Jörg Schmiedmayer vom Vienna Center for Quantum Science and Technology (VCQ) und Vorstand des Atominstitutes an der TU Wien. In einem gewöhnlichen, klassischen Atom-Gas haben alle Teilchen unterschiedliche Geschwindigkeiten und befinden sich an unterschiedlichen Orten. Quantenphysikalisch kann man sie alle durch unterschiedliche Quanten-Wellen beschreiben. Knapp über dem absoluten Nullpunkt nehmen allerdings fast alle Teilchen, sofern sie Bosonen sind, denselben Quanten-Zustand ein - den Zustand mit der geringstmöglichen Energie.

In einem solchen Bose-Einstein-Kondensat schwingen daher alle Quanten-Wellen exakt im Gleichklang, in einer einzigen große Quantenwelle, in der die einzelnen Atome ihre Individualität völlig verlieren. Etwas Ähnliches passiert mit Lichtteilchen in einem Laser: Auch dort schwingen die einzelnen Lichtquanten genau im Gleichschritt und ergeben gemeinsam eine einzige Quanten-Welle.

Bisher nur mit Licht – jetzt mit Atomen

„Unsere Messungen sind eng mit den berühmten Hanbury-Brown-Twiss-Experiment verwandt, mit dem man vor mehr als 50 Jahren die Quanteneigenschaften von Licht untersuchte“, erklärt Aurelien Perrin, Erstautor der Veröffentlichung. In diesem Experiment wird ein mathematischer Zusammenhang zwischen den Aufenthaltsorten der Teilchen untersucht – die sogenannte Korrelationsfunktion. Mit ihr lässt sich Quanten-Licht von gewöhnlichen klassischen Licht unterscheiden: Das Licht einer gewöhnlichen Glühbirne ergibt den Wert 2, bei Laserlicht hat diese Korrelationsfunktion den Wert 1. Eine ganz ähnliche Untersuchung wurde nun mit den Atomen an der Schwelle zur Bose-Einstein-Kondensation durchgeführt. Wenn man die Teilchen zu verschiedenen Zeitpunkten untersucht, während sich aus ihnen ein Bose-Einstein-Kondensat bildet, lässt sich nach der Hanbury-Brown-Twiss-Methode messen, wie stark die quantenphysikalischen Korrelationen zwischen den Teilchen ausgeprägt sind und wie sie sich zeitlich entwickeln.

Überraschende Wechselwirkungen

„Nachdem der Zustand von Atomen im Bose-Einstein-Kondensat dem Zustand von Lichtteilchen im Laserstrahl sehr ähnlich ist, hätte man erwartet, auch ähnliche Hanbury-Brown-Twiss-Korrelationen zu messen. Vorhergesagt wird eine flache Verteilung beim Wert 1, was bedeutet, dass die Wahrscheinlichkeit, zwei Teilchen zu detektieren, überall gleich groß ist“, erklärt Aurelien Perrin. Der Übergang in die Quantenwelt erfolgt dabei sehr rasch. Überraschenderweise wurde aber ein langsamer und komplexer Übergang und ein Korrelationsfunktion mit Werten kleiner als 1 gemessen – ein völlig unerwartetes Ergebnis. „Zuerst haben viele Leute geglaubt, wir hätten einfach einen Fehler gemacht“, schmunzelt Jörg Schmiedmayer, „doch wir konnten zeigen, dass dieses Verhalten durch die komplizierte Wechselwirkung zwischen den Atomen entsteht und sogar schon in den bestehenden Theorien versteckt war“.

In einem Bose-Einstein-Kondensat sind nicht ausnahmslos alle Atome im allertiefsten Energiezustand – ein paar Ausreißer gibt es immer. Und diese Atome, die noch ein kleines bisschen mehr Energie haben als der Rest, sind dafür verantwortlich, dass sich das Bose-Einstein-Kondensat doch anders verhält, als das Licht in einem Laserstrahl. Selbst bei unglaublich kalten 50 Nanokelvin (50 Milliardstel Grad über dem absoluten Nullpunkt) war dieser Effekt noch zu sehen. „Bose-Einstein-Kondensate sind mittlerweile auf der ganzen Welt zu höchst gefragten Versuchsobjekten für Quanten-Experimente geworden. Diese Messungen sind ein wichtiger Beitrag, unser Verständnis von diesen ultrakalten Objekten zu vertiefen“, meint Jörg Schmiedmayer.

Rückfragehinweise:

Prof. Thorsten Schumm
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
+43 (1) 58801 - 141 896
thorsten.schumm@tuwien.ac.at

Prof. Jörg Schmiedmayer
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
+43-1-58801-141801
hannes-joerg.schmiedmayer@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2212.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise