Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grenzübertritt in die Quantenwelt

30.01.2012
Am Atominstitut der TU Wien gelang es erstmals, Quanten-Korrelationen von Atomen zu messen, während sie ein ultrakaltes Bose-Einstein-Kondensat bilden. Dabei stellt sich der Übergang von klassischer Physik zur Quantenmechanik komplexer dar als bisher angenommen.

Es ist der kälteste Materiezustand, den es gibt: Ein Bose-Einstein-Kondensat besteht aus Atomen, die sich bei einer kritischen Temperatur knapp über dem absoluten Nullpunkt zu einem einzigen, rein quantenphysikalischen Objekt vereinen.


Ein Bose-Einstein-Kondensat fällt nach unten, expandiert dabei und wird in einer dünnen Schicht aus Licht vermessen. TU Wien

Nun ist es der Forschungsgruppe von Professor Jörg Schmiedmayer erstmals gelungen, im Experiment zu untersuchen, wie genau der Übergang von einem klassischen Gas zu einem quantenphysikalischen Bose-Einstein-Kondensat vor sich geht. Wie sich herausstellte machen Wechselwirkungen zwischen den Teilchen die Beschreibung dieses Überganges komplizierter als bisher vermutet wurde. Die Ergebnisse der Messung wurden nun im Fachjournal „Nature Physics“ veröffentlicht.

Vom Einzel-Atom zur kollektiven Quanten-Welle

„Auf unter ein Millionstel Grad über dem absoluten Nullpunkt müssen unsere Rubidium-Atome abgekühlt werden, um ein Bose-Einstein-Kondensat zu erzeugen“, sagt Professor Jörg Schmiedmayer vom Vienna Center for Quantum Science and Technology (VCQ) und Vorstand des Atominstitutes an der TU Wien. In einem gewöhnlichen, klassischen Atom-Gas haben alle Teilchen unterschiedliche Geschwindigkeiten und befinden sich an unterschiedlichen Orten. Quantenphysikalisch kann man sie alle durch unterschiedliche Quanten-Wellen beschreiben. Knapp über dem absoluten Nullpunkt nehmen allerdings fast alle Teilchen, sofern sie Bosonen sind, denselben Quanten-Zustand ein - den Zustand mit der geringstmöglichen Energie.

In einem solchen Bose-Einstein-Kondensat schwingen daher alle Quanten-Wellen exakt im Gleichklang, in einer einzigen große Quantenwelle, in der die einzelnen Atome ihre Individualität völlig verlieren. Etwas Ähnliches passiert mit Lichtteilchen in einem Laser: Auch dort schwingen die einzelnen Lichtquanten genau im Gleichschritt und ergeben gemeinsam eine einzige Quanten-Welle.

Bisher nur mit Licht – jetzt mit Atomen

„Unsere Messungen sind eng mit den berühmten Hanbury-Brown-Twiss-Experiment verwandt, mit dem man vor mehr als 50 Jahren die Quanteneigenschaften von Licht untersuchte“, erklärt Aurelien Perrin, Erstautor der Veröffentlichung. In diesem Experiment wird ein mathematischer Zusammenhang zwischen den Aufenthaltsorten der Teilchen untersucht – die sogenannte Korrelationsfunktion. Mit ihr lässt sich Quanten-Licht von gewöhnlichen klassischen Licht unterscheiden: Das Licht einer gewöhnlichen Glühbirne ergibt den Wert 2, bei Laserlicht hat diese Korrelationsfunktion den Wert 1. Eine ganz ähnliche Untersuchung wurde nun mit den Atomen an der Schwelle zur Bose-Einstein-Kondensation durchgeführt. Wenn man die Teilchen zu verschiedenen Zeitpunkten untersucht, während sich aus ihnen ein Bose-Einstein-Kondensat bildet, lässt sich nach der Hanbury-Brown-Twiss-Methode messen, wie stark die quantenphysikalischen Korrelationen zwischen den Teilchen ausgeprägt sind und wie sie sich zeitlich entwickeln.

Überraschende Wechselwirkungen

„Nachdem der Zustand von Atomen im Bose-Einstein-Kondensat dem Zustand von Lichtteilchen im Laserstrahl sehr ähnlich ist, hätte man erwartet, auch ähnliche Hanbury-Brown-Twiss-Korrelationen zu messen. Vorhergesagt wird eine flache Verteilung beim Wert 1, was bedeutet, dass die Wahrscheinlichkeit, zwei Teilchen zu detektieren, überall gleich groß ist“, erklärt Aurelien Perrin. Der Übergang in die Quantenwelt erfolgt dabei sehr rasch. Überraschenderweise wurde aber ein langsamer und komplexer Übergang und ein Korrelationsfunktion mit Werten kleiner als 1 gemessen – ein völlig unerwartetes Ergebnis. „Zuerst haben viele Leute geglaubt, wir hätten einfach einen Fehler gemacht“, schmunzelt Jörg Schmiedmayer, „doch wir konnten zeigen, dass dieses Verhalten durch die komplizierte Wechselwirkung zwischen den Atomen entsteht und sogar schon in den bestehenden Theorien versteckt war“.

In einem Bose-Einstein-Kondensat sind nicht ausnahmslos alle Atome im allertiefsten Energiezustand – ein paar Ausreißer gibt es immer. Und diese Atome, die noch ein kleines bisschen mehr Energie haben als der Rest, sind dafür verantwortlich, dass sich das Bose-Einstein-Kondensat doch anders verhält, als das Licht in einem Laserstrahl. Selbst bei unglaublich kalten 50 Nanokelvin (50 Milliardstel Grad über dem absoluten Nullpunkt) war dieser Effekt noch zu sehen. „Bose-Einstein-Kondensate sind mittlerweile auf der ganzen Welt zu höchst gefragten Versuchsobjekten für Quanten-Experimente geworden. Diese Messungen sind ein wichtiger Beitrag, unser Verständnis von diesen ultrakalten Objekten zu vertiefen“, meint Jörg Schmiedmayer.

Rückfragehinweise:

Prof. Thorsten Schumm
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
+43 (1) 58801 - 141 896
thorsten.schumm@tuwien.ac.at

Prof. Jörg Schmiedmayer
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
+43-1-58801-141801
hannes-joerg.schmiedmayer@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2212.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

nachricht Neue Erscheinungsform magnetischer Monopole entdeckt
08.12.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie