Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gigantische Magnetfelder im Universum

22.03.2017

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist unsere Milchstraße mit nur rund Hunderttausend Lichtjahren im Durchmesser sehr klein.


Radiokarte des Relikts am Rand des Galaxienhaufens CIZA J2242+53 in ca. 2 Milliarden Lichtjahren Entfernung bei 3cm Wellenlänge.

Maja Kierdorf et al., 2017, A&A 600, A18


Das 100-m-Radioteleskop bei Bad Münstereifel-Effelsberg. Mit diesem Teleskop wurden die Messungen der polarisierten Radiostrahlung von Galaxienhaufen bei 3 und 6 cm Wellenlänge durchgeführt.

Norbert Junkes/MPIfR

Galaxienhaufen bestehen aus einer großen Zahl von Sternsystemen wie unserer Milchstraße, heißem Gas, Magnetfeldern, geladenen Teilchen und Dunkler Materie von unbekannter Zusammensetzung. Die bei einer Kollision von Galaxienhaufen entstehende Stoßwelle komprimiert das heiße Gas und die Magnetfelder des Haufens. Die dadurch entstandenen bogenförmigen Gebilde fallen durch ihre Röntgen- und Radiostrahlung auf und werden „Relikte“ genannt.

Sie wurden im Jahr 1970 mit einem Radioteleskop bei Cambridge in England entdeckt. In rund 70 Galaxienhaufen konnten bis dato solche Relikte nachgewiesen oder Hinweise auf Relikte gefunden werden, aber es existieren sicher wesentlich mehr. Sie zeugen von gewaltigen Gasströmungen, die die Struktur des Universums beständig verändern.

Radiowellen eignen sich hervorragend, um Relikte aufzuspüren. Bei der Kompression werden die magnetischen Feldlinien geordnet, was sich auch auf die Radiostrahlung auswirkt. Fachleute sprechen hier von linearer Polarisation. Diesen Effekt konnten Forscher des Max-Planck-Instituts für Radioastronomie Bonn (MPIfR), des Argelander-Institutes für Radioastronomie an der Universität Bonn (AIfA), der Thüringer Landessternwarte Tautenburg (TLS) sowie Kollegen aus Cambridge/USA in vier Galaxienhaufen nachweisen.

Dazu benutzten sie das 100-m-Radioteleskop des MPIfR in der Nähe von Bad Münstereifel-Effelsberg in der Eifel bei Wellenlängen von 3 cm und 6 cm. Diese kurzen Wellenlängen haben den Vorteil, dass die polarisierte Strahlung auf dem Weg durch den Galaxienhaufen und durch unsere eigene Milchstraße kaum geschwächt wird. Abb. 1 zeigt das prominenteste Beispiel.

In den vier beobachteten Haufen wurden linear polarisierte Relikte gefunden, in einem Fall erstmalig. Die Magnetfeldstärken sind etwa so hoch wie die in unserer Milchstraße. Die gemessenen Polarisationsgrade von bis zu 50% sind jedoch ungewöhnlich hoch, wie sie nur von geladenen Teilchen in einem extrem geordneten Magnetfeld erzeugt werden können.

„Mit 5-6 Millionen Lichtjahren Ausdehnung haben wir die bis jetzt größten zusammenhängenden Magnetfelder im Universum gefunden“, so die Projektleiterin Maja Kierdorf vom MPIfR Bonn, die Erstautorin der Veröffentlichung, die darüber ihre Master-Arbeit an der Universität Bonn schrieb. Ko-Autor Matthias Hoeft von der TLS Tautenburg entwickelte für dieses Projekt eine Methode, wie aus dem gemessenen Polarisationsgrad die Machzahl bestimmt werden kann, also das Verhältnis der relativen Geschwindigkeit zwischen den kollidierenden Gaswolken zur Schallgeschwindigkeit.

Die gefundenen Machzahlen von etwa zwei bedeuten, dass die Galaxienhaufen mit Geschwindigkeiten von etwa 2000 km/s aufeinandertreffen, deutlich höher als aus früheren Messungen der Röntgenstrahlung abgeleitet.

Die neuen Messungen mit dem Effelsberger Teleskop liefern den Nachweis, dass sich die Polarisationsrichtung der Radiostrahlung aus den Relikten mit der Wellenlänge ändert. Dieser nach dem englischen Physiker Michael Faraday benannte Effekt lässt vermuten, dass geordnete Magnetfelder auch zwischen den Galaxienhaufen existieren und, im Zusammenspiel mit heißem Gas, für die Drehung der Polarisationsrichtung verantwortlich sind. Solche Magnetfelder könnten noch viel größer sein als die Haufen selbst.

„Das Effelsberger Radioteleskop hat sich erneut als ideales Instrument zum Nachweis von Magnetfeldern im Universum erwiesen“, betont Ko-Autor Rainer Beck vom MPIfR, der sich seit über 40 Jahren mit diesem Thema beschäftigt. „Nun können wir Galaxienhaufen mithilfe der Radio-Polarisation systematisch nach geordneten Magnetfeldern absuchen.“

Das Forscherteam umfasst Maja Kierdorf, Rainer Beck, Matthias Hoeft, Uli Klein, Reinout van Weeren, William Forman, und Christine Jones. Maja Kierdorf, die Erstautorin, und Rainer Beck sind Mitarbeiter am MPIfR.

Originalveröffentlichung:
Relics in galaxy clusters at high radio frequencies, M. Kierdorf, R. Beck, M. Hoeft, U. Klein, R. J. van Weeren, W. R. Forman, and C. Jones, 2017, Astronomy & Astrophysics Astronomy & Astrophysics 600, A18 (22. März 2017): https://doi.org/10.1051/0004-6361/201629570

Kontakt:

Maja Kierdorf,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-180
E-mail: kierdorf@mpifr-bonn.mpg.de

Dr. Rainer Beck,
Max-Planck-Institut für Radioastronomie, Bonn
Fon: +49 6221 528-323
E-mail: rbeck@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressemeldungen/2017/4

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt
21.06.2018 | Max-Planck-Institut für Radioastronomie

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt

21.06.2018 | Physik Astronomie

Schneller und sicherer Fliegen

21.06.2018 | Informationstechnologie

Innovative Handprothesensteuerung besteht Alltagstest

21.06.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics