Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geisterteilchen wiegen - Physiker wollen mit "KATRIN" die Masse von Neutrinos bestimmen

02.10.2008
Von Kopf bis Fuß in weiße Schutzkleidung gehüllt, spannen Studenten Drähte in einen Metallrahmen - eine alltägliche Szene im Reinraum des Instituts für Kernphysik der Universität Münster.

Die Kleidung soll dabei nicht die Menschen schützen, sondern die hochempfindlichen Drähte vor Verunreinigungen bewahren. Das sensible Drahtgefüge ist Teil des Experiments "KATRIN", das am Forschungszentrum Karlsruhe aufgebaut wird. Mit KATRIN soll gelingen, was bisher niemand geschafft hat: Die beteiligten Forscher wollen Neutrinos "wiegen", also ihre Masse bestimmen.

Das KATRIN-Experiment ("Karlsruhe Tritium Neutrino Experiment"), dessen Messungen voraussichtlich im Jahr 2010 beginnen, soll die Astroteilchenphysik einen großen Schritt voran bringen. Beteiligt sind mehr als 125 Wissenschaftler und Ingenieure aus fünf Ländern. Die münstersche Arbeitsgruppe um Prof. Dr. Christian Weinheimer ist nach der federführenden Gruppe aus Karlsruhe (Forschungszentrum und Universität) größter Projektpartner.

"Unsere Stärken sind - neben der fachlichen Expertise unserer Mitarbeiter - die Möglichkeiten, die unsere institutseigenen Werkstätten bieten. Wir können spezielle Bauteile entwickeln und produzieren, die es nirgendwo zu kaufen gibt", so Prof. Weinheimer. "Und wir haben nicht nur viele Wissenschaftler und Techniker, die sich beim KATRIN-Experiment engagieren, sondern auch zahlreiche Studierende, die hier ihre Abschlussarbeiten schreiben." Das Bundesministerium für Bildung und Forschung unterstützt die Arbeit der Münsteraner in den kommenden drei Jahren mit rund 860.000 Euro.

Seit etwa zehn Jahren ist bekannt, dass Neutrinos, die zu den Elementarteilchen gehören, eine Masse besitzen. Die Frage, wie groß diese Masse ist, ist sowohl für die Teilchen- als auch für die Astrophysik fundamental. Es ist unklar, warum die Masse so viel kleiner ist als die Masse aller anderen bekannten Elementarteilchen. Genauso wichtig wäre es auch zu wissen, welchen Beitrag die Neutrinos zur Strukturbildung des Universums leisten.

Obwohl es von Neutrinos wimmelt - allein etwa 65 Milliarden von der Sonne stammende Neutrinos bewegen sich pro Sekunde durch einen menschlichen Fingernagel - sind die winzigen Teilchen kaum nachweisbar. "Neutrinos fliegen einfach durch die Erde hindurch. Da sie solch eine schwache Wechselwirkung haben, werden sie auch Geisterteilchen genannt", beschreibt Prof. Weinheimer die geheimnisvollen Partikel.

Um die Neutrinos zu "wiegen", wenden die Forscher einen Trick an: Beim radioaktiven Betazerfall entstehen neben Neutrinos auch Elektronen. Die frei werdende Energie teilt sich - zu wechselnden Anteilen - auf Elektronen und Neutrinos auf. Die Energie der Elektronen kann mit einem speziellen Spektrometer bestimmt werden, so dass die Forscher auf die Masse der Neutrinos rückschließen können.

Ein Kernstück des weltweit einzigartigen Experiments KATRIN ist die "Tritium-Quelle". Tritium, oder "superschwerer Wasserstoff", ist ein radioaktiver Betastrahler. Bei der Tritium-Quelle handelt es sich um eine 16 Meter lange Konstruktion, die auf minus 246 Grad Celsius gekühlt wird und in die Tritiumgas eingeleitet wird. Während das Tritiumgas selbst wieder aufwändig abgepumpt wird, werden die aus dem Tritiumzerfall stammenden Elektronen mit einem Magnetsystem in ein hochauflösendes Spektrometer von 23 Metern Länge und einem Durchmesser von zehn Metern geleitet. Dort wird die Elektronen-Energie präzise bestimmt.

Um das empfindliche Spektrometer, in dessen Innern Ultrahochvakuum herrscht, gegen störende Elektronen von außen abzuschirmen, haben die Forscher einen "Elektronenfänger" entwickelt - jene Konstruktion aus Elektrodendrähten, die im Reinraum des Instituts für Kernphysik mit höchster Präzision zusammengesetzt wird.

Rund 250 Elektronenfänger-Module werden an der WWU produziert und nach Karlsruhe geliefert, wo sie in das KATRIN-Spektrometer eingebaut werden. Darüber hinaus sind die münsterschen Forscher an weiteren Komponenten des KATRIN-Experiments beteiligt. Zum Beispiel haben sie zusammen mit der Physikalisch-Technischen Bundesanstalt in Braunschweig einen der präzisesten Spannungsteiler der Welt entwickelt. "Das Spektrometer steht im Experiment unter Hochspannung. Der Spannungsteiler sorgt dafür, dass diese Spannung auf ein Millionstel genau stabil bleibt", erklärt Prof. Weinheimer.

Die Drähte, die die Mitarbeiter im Reinraum auf Bruchteile von Millimetern genau zuschneiden und in die Elektronenfänger-Module einspannen, werden in der anschließenden Qualitätskontrolle mit einem eigens entwickelten Laser-Sensor vermessen. Die Position und die Spannung der Drähte müssen exakt stimmen, sonst würden später im Experiment Störungen auftreten. Auch jede einzelne Drahtaufhängung wird genau geprüft. "Da jeder Arbeitsschritt protokolliert wird, wäre es unangenehm, wenn ein von mir gefertigtes Modul in Karlsruhe versagt", sagt ein Physikstudent schmunzelnd. "Dann wüssten die dort sofort, wer hier in Münster nicht ordentlich gearbeitet hat".

Dr. Christina Heimken | idw
Weitere Informationen:
http://www-ik.fzk.de/tritium/
http://www.uni-muenster.de/Physik.KP/AGWeinheimer/Welcome-de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heinz Maier-Leibnitz-Preise 2017: DFG und BMBF zeichnen vier Forscherinnen und sechs Forscher aus

23.02.2017 | Förderungen Preise

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungsnachrichten

Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor

23.02.2017 | Physik Astronomie