Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geisterteilchen wiegen - Physiker wollen mit "KATRIN" die Masse von Neutrinos bestimmen

02.10.2008
Von Kopf bis Fuß in weiße Schutzkleidung gehüllt, spannen Studenten Drähte in einen Metallrahmen - eine alltägliche Szene im Reinraum des Instituts für Kernphysik der Universität Münster.

Die Kleidung soll dabei nicht die Menschen schützen, sondern die hochempfindlichen Drähte vor Verunreinigungen bewahren. Das sensible Drahtgefüge ist Teil des Experiments "KATRIN", das am Forschungszentrum Karlsruhe aufgebaut wird. Mit KATRIN soll gelingen, was bisher niemand geschafft hat: Die beteiligten Forscher wollen Neutrinos "wiegen", also ihre Masse bestimmen.

Das KATRIN-Experiment ("Karlsruhe Tritium Neutrino Experiment"), dessen Messungen voraussichtlich im Jahr 2010 beginnen, soll die Astroteilchenphysik einen großen Schritt voran bringen. Beteiligt sind mehr als 125 Wissenschaftler und Ingenieure aus fünf Ländern. Die münstersche Arbeitsgruppe um Prof. Dr. Christian Weinheimer ist nach der federführenden Gruppe aus Karlsruhe (Forschungszentrum und Universität) größter Projektpartner.

"Unsere Stärken sind - neben der fachlichen Expertise unserer Mitarbeiter - die Möglichkeiten, die unsere institutseigenen Werkstätten bieten. Wir können spezielle Bauteile entwickeln und produzieren, die es nirgendwo zu kaufen gibt", so Prof. Weinheimer. "Und wir haben nicht nur viele Wissenschaftler und Techniker, die sich beim KATRIN-Experiment engagieren, sondern auch zahlreiche Studierende, die hier ihre Abschlussarbeiten schreiben." Das Bundesministerium für Bildung und Forschung unterstützt die Arbeit der Münsteraner in den kommenden drei Jahren mit rund 860.000 Euro.

Seit etwa zehn Jahren ist bekannt, dass Neutrinos, die zu den Elementarteilchen gehören, eine Masse besitzen. Die Frage, wie groß diese Masse ist, ist sowohl für die Teilchen- als auch für die Astrophysik fundamental. Es ist unklar, warum die Masse so viel kleiner ist als die Masse aller anderen bekannten Elementarteilchen. Genauso wichtig wäre es auch zu wissen, welchen Beitrag die Neutrinos zur Strukturbildung des Universums leisten.

Obwohl es von Neutrinos wimmelt - allein etwa 65 Milliarden von der Sonne stammende Neutrinos bewegen sich pro Sekunde durch einen menschlichen Fingernagel - sind die winzigen Teilchen kaum nachweisbar. "Neutrinos fliegen einfach durch die Erde hindurch. Da sie solch eine schwache Wechselwirkung haben, werden sie auch Geisterteilchen genannt", beschreibt Prof. Weinheimer die geheimnisvollen Partikel.

Um die Neutrinos zu "wiegen", wenden die Forscher einen Trick an: Beim radioaktiven Betazerfall entstehen neben Neutrinos auch Elektronen. Die frei werdende Energie teilt sich - zu wechselnden Anteilen - auf Elektronen und Neutrinos auf. Die Energie der Elektronen kann mit einem speziellen Spektrometer bestimmt werden, so dass die Forscher auf die Masse der Neutrinos rückschließen können.

Ein Kernstück des weltweit einzigartigen Experiments KATRIN ist die "Tritium-Quelle". Tritium, oder "superschwerer Wasserstoff", ist ein radioaktiver Betastrahler. Bei der Tritium-Quelle handelt es sich um eine 16 Meter lange Konstruktion, die auf minus 246 Grad Celsius gekühlt wird und in die Tritiumgas eingeleitet wird. Während das Tritiumgas selbst wieder aufwändig abgepumpt wird, werden die aus dem Tritiumzerfall stammenden Elektronen mit einem Magnetsystem in ein hochauflösendes Spektrometer von 23 Metern Länge und einem Durchmesser von zehn Metern geleitet. Dort wird die Elektronen-Energie präzise bestimmt.

Um das empfindliche Spektrometer, in dessen Innern Ultrahochvakuum herrscht, gegen störende Elektronen von außen abzuschirmen, haben die Forscher einen "Elektronenfänger" entwickelt - jene Konstruktion aus Elektrodendrähten, die im Reinraum des Instituts für Kernphysik mit höchster Präzision zusammengesetzt wird.

Rund 250 Elektronenfänger-Module werden an der WWU produziert und nach Karlsruhe geliefert, wo sie in das KATRIN-Spektrometer eingebaut werden. Darüber hinaus sind die münsterschen Forscher an weiteren Komponenten des KATRIN-Experiments beteiligt. Zum Beispiel haben sie zusammen mit der Physikalisch-Technischen Bundesanstalt in Braunschweig einen der präzisesten Spannungsteiler der Welt entwickelt. "Das Spektrometer steht im Experiment unter Hochspannung. Der Spannungsteiler sorgt dafür, dass diese Spannung auf ein Millionstel genau stabil bleibt", erklärt Prof. Weinheimer.

Die Drähte, die die Mitarbeiter im Reinraum auf Bruchteile von Millimetern genau zuschneiden und in die Elektronenfänger-Module einspannen, werden in der anschließenden Qualitätskontrolle mit einem eigens entwickelten Laser-Sensor vermessen. Die Position und die Spannung der Drähte müssen exakt stimmen, sonst würden später im Experiment Störungen auftreten. Auch jede einzelne Drahtaufhängung wird genau geprüft. "Da jeder Arbeitsschritt protokolliert wird, wäre es unangenehm, wenn ein von mir gefertigtes Modul in Karlsruhe versagt", sagt ein Physikstudent schmunzelnd. "Dann wüssten die dort sofort, wer hier in Münster nicht ordentlich gearbeitet hat".

Dr. Christina Heimken | idw
Weitere Informationen:
http://www-ik.fzk.de/tritium/
http://www.uni-muenster.de/Physik.KP/AGWeinheimer/Welcome-de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie