Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geisterteilchen wiegen - Physiker wollen mit "KATRIN" die Masse von Neutrinos bestimmen

02.10.2008
Von Kopf bis Fuß in weiße Schutzkleidung gehüllt, spannen Studenten Drähte in einen Metallrahmen - eine alltägliche Szene im Reinraum des Instituts für Kernphysik der Universität Münster.

Die Kleidung soll dabei nicht die Menschen schützen, sondern die hochempfindlichen Drähte vor Verunreinigungen bewahren. Das sensible Drahtgefüge ist Teil des Experiments "KATRIN", das am Forschungszentrum Karlsruhe aufgebaut wird. Mit KATRIN soll gelingen, was bisher niemand geschafft hat: Die beteiligten Forscher wollen Neutrinos "wiegen", also ihre Masse bestimmen.

Das KATRIN-Experiment ("Karlsruhe Tritium Neutrino Experiment"), dessen Messungen voraussichtlich im Jahr 2010 beginnen, soll die Astroteilchenphysik einen großen Schritt voran bringen. Beteiligt sind mehr als 125 Wissenschaftler und Ingenieure aus fünf Ländern. Die münstersche Arbeitsgruppe um Prof. Dr. Christian Weinheimer ist nach der federführenden Gruppe aus Karlsruhe (Forschungszentrum und Universität) größter Projektpartner.

"Unsere Stärken sind - neben der fachlichen Expertise unserer Mitarbeiter - die Möglichkeiten, die unsere institutseigenen Werkstätten bieten. Wir können spezielle Bauteile entwickeln und produzieren, die es nirgendwo zu kaufen gibt", so Prof. Weinheimer. "Und wir haben nicht nur viele Wissenschaftler und Techniker, die sich beim KATRIN-Experiment engagieren, sondern auch zahlreiche Studierende, die hier ihre Abschlussarbeiten schreiben." Das Bundesministerium für Bildung und Forschung unterstützt die Arbeit der Münsteraner in den kommenden drei Jahren mit rund 860.000 Euro.

Seit etwa zehn Jahren ist bekannt, dass Neutrinos, die zu den Elementarteilchen gehören, eine Masse besitzen. Die Frage, wie groß diese Masse ist, ist sowohl für die Teilchen- als auch für die Astrophysik fundamental. Es ist unklar, warum die Masse so viel kleiner ist als die Masse aller anderen bekannten Elementarteilchen. Genauso wichtig wäre es auch zu wissen, welchen Beitrag die Neutrinos zur Strukturbildung des Universums leisten.

Obwohl es von Neutrinos wimmelt - allein etwa 65 Milliarden von der Sonne stammende Neutrinos bewegen sich pro Sekunde durch einen menschlichen Fingernagel - sind die winzigen Teilchen kaum nachweisbar. "Neutrinos fliegen einfach durch die Erde hindurch. Da sie solch eine schwache Wechselwirkung haben, werden sie auch Geisterteilchen genannt", beschreibt Prof. Weinheimer die geheimnisvollen Partikel.

Um die Neutrinos zu "wiegen", wenden die Forscher einen Trick an: Beim radioaktiven Betazerfall entstehen neben Neutrinos auch Elektronen. Die frei werdende Energie teilt sich - zu wechselnden Anteilen - auf Elektronen und Neutrinos auf. Die Energie der Elektronen kann mit einem speziellen Spektrometer bestimmt werden, so dass die Forscher auf die Masse der Neutrinos rückschließen können.

Ein Kernstück des weltweit einzigartigen Experiments KATRIN ist die "Tritium-Quelle". Tritium, oder "superschwerer Wasserstoff", ist ein radioaktiver Betastrahler. Bei der Tritium-Quelle handelt es sich um eine 16 Meter lange Konstruktion, die auf minus 246 Grad Celsius gekühlt wird und in die Tritiumgas eingeleitet wird. Während das Tritiumgas selbst wieder aufwändig abgepumpt wird, werden die aus dem Tritiumzerfall stammenden Elektronen mit einem Magnetsystem in ein hochauflösendes Spektrometer von 23 Metern Länge und einem Durchmesser von zehn Metern geleitet. Dort wird die Elektronen-Energie präzise bestimmt.

Um das empfindliche Spektrometer, in dessen Innern Ultrahochvakuum herrscht, gegen störende Elektronen von außen abzuschirmen, haben die Forscher einen "Elektronenfänger" entwickelt - jene Konstruktion aus Elektrodendrähten, die im Reinraum des Instituts für Kernphysik mit höchster Präzision zusammengesetzt wird.

Rund 250 Elektronenfänger-Module werden an der WWU produziert und nach Karlsruhe geliefert, wo sie in das KATRIN-Spektrometer eingebaut werden. Darüber hinaus sind die münsterschen Forscher an weiteren Komponenten des KATRIN-Experiments beteiligt. Zum Beispiel haben sie zusammen mit der Physikalisch-Technischen Bundesanstalt in Braunschweig einen der präzisesten Spannungsteiler der Welt entwickelt. "Das Spektrometer steht im Experiment unter Hochspannung. Der Spannungsteiler sorgt dafür, dass diese Spannung auf ein Millionstel genau stabil bleibt", erklärt Prof. Weinheimer.

Die Drähte, die die Mitarbeiter im Reinraum auf Bruchteile von Millimetern genau zuschneiden und in die Elektronenfänger-Module einspannen, werden in der anschließenden Qualitätskontrolle mit einem eigens entwickelten Laser-Sensor vermessen. Die Position und die Spannung der Drähte müssen exakt stimmen, sonst würden später im Experiment Störungen auftreten. Auch jede einzelne Drahtaufhängung wird genau geprüft. "Da jeder Arbeitsschritt protokolliert wird, wäre es unangenehm, wenn ein von mir gefertigtes Modul in Karlsruhe versagt", sagt ein Physikstudent schmunzelnd. "Dann wüssten die dort sofort, wer hier in Münster nicht ordentlich gearbeitet hat".

Dr. Christina Heimken | idw
Weitere Informationen:
http://www-ik.fzk.de/tritium/
http://www.uni-muenster.de/Physik.KP/AGWeinheimer/Welcome-de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle

17.08.2017 | Energie und Elektrotechnik

Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen

17.08.2017 | Verfahrenstechnologie

Fernerkundung für den Naturschutz

17.08.2017 | Ökologie Umwelt- Naturschutz