Fünf Atome für guten Kontakt

Eine internationale Forschergruppe unter Leitung des Kieler Physikers Richard Berndt hat eine für die Molekularelektronik zentrale Frage beantwortet. Sie erforschten, wie man kontrolliert einen Kontakt zu einem einzelnen Molekül herstellt und wie sich die Art des Kontakts auf seine elektrischen Eigenschaften auswirkt. Die Wissenschaftler aus Deutschland, Frankreich und Spanien veröffentlichten ihre Ergebnisse am gestrigen Sonntag (14.11.2010) in der Online-Vorabausgabe von Nature Nanotechnolgy.

Die Physiker konstruierten auf einer Kupferoberfläche eine Reihe von Kontaktflächen, die jeweils nur aus wenigen Atomen bestanden. Mit einer scharfen Kupferspitze führten sie ein einzelnes Kohlenstoffmolekül (C60) an jeden dieser ultrakleinen Kontakte heran und bestimmten jeweils den elektrischen Widerstand. „Zunächst bestand die Verbindung zwischen Molekül und Oberfläche nur aus einem einzigen Atom“, berichtet Dr. Guillaume Schull, der bis vor Kurzem an der Christian-Albrechts-Universität zu Kiel (CAU) forschte. „Indem wir die Zahl der Kontaktatome schrittweise erhöht haben, ließ sich der Strom durchs Molekül zunächst mehr als verzehnfachen.“ Im Fall von C60-Molekülen hat dieser positive Trend aber eine Grenze: „Ab fünf Kontaktatomen beginnt das Molekül selbst wie ein Flaschenhals für den Strom zu wirken“, so Professor Berndt.

Während in der belebten Natur molekulare Maschinen für nahezu jede denkbare technische Funktion existieren, steckt eine entsprechende Technologie noch in den Kinderschuhen. Seit einigen Jahren wird nach Wegen gesucht, aus einzelnen Molekülen elektrische Schaltungen zu bauen, die in Zukunft eine weitere Verkleinerung elektronischer Bauelemente ermöglichen können. Die Forschungsergebnisse sollen helfen, Eigenschaften und Prozesse auf der Skala einzelner Moleküle besser zu verstehen. Das Wissen um leitfähige Moleküle wird in die Entwicklung von elektronischen Bauteilen auf Basis organischer Materialien einfließen.

Die Christian-Albrechts-Universität zu Kiel hat als Forschungsuniversität im Norden Deutschlands eine ausgewiesene internationale Expertise im Bereich der Nanowissenschaften. Die Mitglieder des Sonderforschungsbereichs 677 „Funktion durch Schalten“, dem Professor Berndt angehört, forschen im Bereich der molekularen Nanowissenschaften. Zudem bewirbt sich die CAU in der aktuellen Runde der Exzellenzinitiative mit dem nanowissenschaftlichen Cluster-Antrag „Materials for Life“. Im Cluster wollen die Kieler Wissenschaftler neue intelligente Materialien für die medizinische Therapie erforschen.

Original-Veröffentlichung:
G. Schull, Th. Frederiksen, A. Arnau, D. Sanchez, R. Berndt: Atomic-scale engineering of electrodes for single-molecule contacts.

Nature Nanotechnology 2010, DOI: 10.1038/NNANO.2010.215

Eine Abbildung zum Thema steht zum Download bereit:
http://www.uni-kiel.de/download/pm/2010/2010-166-1.jpg
Bildunterschrift: Grafische Darstellung einer Kupferspitze, an deren Ende ein Kohlenstoffmolekül (C60) angeheftet ist. Das Molekül schwebt über einer Metalloberfläche, auf der sich fünf Kontakte befinden, die Atom für Atom zusammengebaut wurden.

Grafik: Schull

Kontakt:
Prof. Dr. Richard Berndt
Institut für Experimentelle und Angewandte Physik
Abteilung Oberflächenphysik
Christian-Albrechts-Universität zu Kiel
Tel.: 0431/880-3946 oder -2478
E-Mail: berndt@physik.uni-kiel.de

Media Contact

Sandra Sieraad idw

Weitere Informationen:

http://www.uni-kiel.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Forschende enthüllen neue Funktion von Onkoproteinen

Forschende der Uni Würzburg haben herausgefunden: Das Onkoprotein MYCN lässt Krebszellen nicht nur stärker wachsen, sondern macht sie auch resistenter gegen Medikamente. Für die Entwicklung neuer Therapien ist das ein…

Mit Kleinsatelliten den Asteroiden Apophis erforschen

In fünf Jahren fliegt ein größerer Asteroid sehr nah an der Erde vorbei – eine einmalige Chance, ihn zu erforschen. An der Uni Würzburg werden Konzepte für eine nationale Kleinsatellitenmission…

Zellskelett-Gene regulieren Vernetzung im Säugerhirn

Marburger Forschungsteam beleuchtet, wie Nervenzellen Netzwerke bilden. Ein Molekülpaar zu trennen, hat Auswirkungen auf das Networking im Hirn: So lässt sich zusammenfassen, was eine Marburger Forschungsgruppe jetzt über die Vernetzung…

Partner & Förderer