Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der Universität Hamburg entwickeln neue Methode des Kühlens mit Lichtwellen

06.07.2012
Kälter als der Weltraum

Dass Licht entgegen unserer Intuition nicht immer mit Wärme gleichzusetzen ist, macht sich die Quantenphysik bei der Erforschung von Atomen und deren Eigenschaften zunutze.

Der Arbeitsgruppe Atomoptik am Institut für Laserphysik der Universität Hamburg ist es nun gelungen, mit Licht Gas-Atome so stark herunter zu kühlen, dass sie sich zu einer Materiewelle zusammenschließen. Das berichten die Wissenschaftler in der aktuellen Ausgabe des Fachjournals Science. Das Gas ist dann mehr als 10 Millionen Mal kälter als der Weltraum, in dem ungefähr drei Grad über dem absoluten Nullpunkt (-273,15 Grad) herrschen.

In dem Versuchsaufbau wird Laserlicht in einem sogenannten optischen Resonator, also zwischen zwei exakt justierten Spiegeln, hin und her reflektiert. Trifft es auf die Atome eines Gases, werden diese gebremst und somit das gesamte Gas abgekühlt. Im Kontrast zu bisherigen Lichtkühlmethoden ist das neue Verfahren auch bei vergleichsweise hohen Gasdichten wirksam, und es ist zudem nahezu unabhängig von der verwendeten Sorte von Gasteilchen.

Durch die Kombination von hohen Dichten und tiefen Temperaturen entwickeln alle Gas-Atome dieselben physikalischen Eigenschaften und bewegen sich nicht mehr „unordentlich“ durcheinander, sondern schwingen gemeinsam. Durch dieses „Marschieren im Gleichschritt“ verhalten sie sich wie ein einziges „Superatom“ – ein Zustand, der nach den Physikern Satyendra Nath Bose und Albert Einstein als Bose-Einstein-Kondensat bezeichnet wird. Er manifestiert sich durch ausgeprägte Welleneigenschaften.

„Das Wechselspiel zwischen Licht- und Materieteilchen erlaubt tiefe Einblicke in die Welt der Quantenphysik und ist hochinteressant für die Grundlagenforschung“, erklärt Professor Dr. Andreas Hemmerich, Leiter der Arbeitsgruppe Atomoptik, „aber auch Anwendungen sind denkbar. Das neue Lichtkühlverfahren hat das Potential, viel effizienter als bisher Materiewellen zu erzeugen, was in vielen Bereichen der modernen Quantentechnologie von großem Interesse ist.“

Es könnte etwa als Grundbaustein zur Entwicklung eines Atomlasers beitragen, dessen Strahl nicht aus einfarbigem Licht, sondern aus Materiewellen besteht. Damit wären Messungen von bisher unerreichter Genauigkeit und Empfindlichkeit möglich – zum Beispiel im Bereich der Rotations- und Gravitationsbeschleunigung, der Nanotechnologie oder der Oberflächenphysik.

Die neuen Forschungsergebnisse wurden im Rahmen des von der Deutschen Forschungsgemeinschaft geförderten Sonderforschungsbereichs „Lichtinduzierte Dynamik und Kontrolle korrelierter Quantensysteme“ erzielt. Hier können auch Studierende im Rahmen von Bachelor- und Master-Arbeiten an aktueller Forschung teilnehmen und direkt mit den Forscherinnen und Forschern aus Hamburg sowie mit internationalen Gästen zusammenarbeiten und diskutieren.

Für Rückfragen:

Prof. Dr. Andreas Hemmerich
Leiter der Gruppe „Atomoptik“ des Instituts für Laserphysik
Tel.: 040-89 98-51 62
E-Mail: hemmerich@physnet.uni-hamburg.de

Birgit Kruse | idw
Weitere Informationen:
http://www.uni-hamburg.de

Weitere Berichte zu: Atom Atomoptik Gas-Atome Kühlens Lichtwelle Materiewelle Quantenphysik Weltraum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit