Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der Universität Hamburg entwickeln neue Methode des Kühlens mit Lichtwellen

06.07.2012
Kälter als der Weltraum

Dass Licht entgegen unserer Intuition nicht immer mit Wärme gleichzusetzen ist, macht sich die Quantenphysik bei der Erforschung von Atomen und deren Eigenschaften zunutze.

Der Arbeitsgruppe Atomoptik am Institut für Laserphysik der Universität Hamburg ist es nun gelungen, mit Licht Gas-Atome so stark herunter zu kühlen, dass sie sich zu einer Materiewelle zusammenschließen. Das berichten die Wissenschaftler in der aktuellen Ausgabe des Fachjournals Science. Das Gas ist dann mehr als 10 Millionen Mal kälter als der Weltraum, in dem ungefähr drei Grad über dem absoluten Nullpunkt (-273,15 Grad) herrschen.

In dem Versuchsaufbau wird Laserlicht in einem sogenannten optischen Resonator, also zwischen zwei exakt justierten Spiegeln, hin und her reflektiert. Trifft es auf die Atome eines Gases, werden diese gebremst und somit das gesamte Gas abgekühlt. Im Kontrast zu bisherigen Lichtkühlmethoden ist das neue Verfahren auch bei vergleichsweise hohen Gasdichten wirksam, und es ist zudem nahezu unabhängig von der verwendeten Sorte von Gasteilchen.

Durch die Kombination von hohen Dichten und tiefen Temperaturen entwickeln alle Gas-Atome dieselben physikalischen Eigenschaften und bewegen sich nicht mehr „unordentlich“ durcheinander, sondern schwingen gemeinsam. Durch dieses „Marschieren im Gleichschritt“ verhalten sie sich wie ein einziges „Superatom“ – ein Zustand, der nach den Physikern Satyendra Nath Bose und Albert Einstein als Bose-Einstein-Kondensat bezeichnet wird. Er manifestiert sich durch ausgeprägte Welleneigenschaften.

„Das Wechselspiel zwischen Licht- und Materieteilchen erlaubt tiefe Einblicke in die Welt der Quantenphysik und ist hochinteressant für die Grundlagenforschung“, erklärt Professor Dr. Andreas Hemmerich, Leiter der Arbeitsgruppe Atomoptik, „aber auch Anwendungen sind denkbar. Das neue Lichtkühlverfahren hat das Potential, viel effizienter als bisher Materiewellen zu erzeugen, was in vielen Bereichen der modernen Quantentechnologie von großem Interesse ist.“

Es könnte etwa als Grundbaustein zur Entwicklung eines Atomlasers beitragen, dessen Strahl nicht aus einfarbigem Licht, sondern aus Materiewellen besteht. Damit wären Messungen von bisher unerreichter Genauigkeit und Empfindlichkeit möglich – zum Beispiel im Bereich der Rotations- und Gravitationsbeschleunigung, der Nanotechnologie oder der Oberflächenphysik.

Die neuen Forschungsergebnisse wurden im Rahmen des von der Deutschen Forschungsgemeinschaft geförderten Sonderforschungsbereichs „Lichtinduzierte Dynamik und Kontrolle korrelierter Quantensysteme“ erzielt. Hier können auch Studierende im Rahmen von Bachelor- und Master-Arbeiten an aktueller Forschung teilnehmen und direkt mit den Forscherinnen und Forschern aus Hamburg sowie mit internationalen Gästen zusammenarbeiten und diskutieren.

Für Rückfragen:

Prof. Dr. Andreas Hemmerich
Leiter der Gruppe „Atomoptik“ des Instituts für Laserphysik
Tel.: 040-89 98-51 62
E-Mail: hemmerich@physnet.uni-hamburg.de

Birgit Kruse | idw
Weitere Informationen:
http://www.uni-hamburg.de

Weitere Berichte zu: Atom Atomoptik Gas-Atome Kühlens Lichtwelle Materiewelle Quantenphysik Weltraum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise