Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher prüfen, ob das Neutrino beim Einfang eines Elektrons sein Gewicht verraten wird

20.04.2015

Tübinger Physiker und sein slowakischer Kollege halten nach neuen Berechnungen die Lösung einer großen Frage der Elementarteilchenphysik für möglich

In der Elementarteilchenphysik untersuchen Wissenschaftler, aus welchen kleinsten, nicht weiter in Untereinheiten zerlegbaren Teilchen die Materie besteht und wie diese miteinander wechselwirken. In der Teilchenphysik sind mehr als 60 Arten solcher fundamentalen Bestandteile bekannt. Eines der größten noch offenen Probleme in diesem Bereich ist die Bestimmung der Masse des Neutrinos.

Neutrinos sind elektrisch neutral und treten, wie alle Teilchen ihrer Gruppe der Leptonen, stets mit ihrem Gegenstück, dem Antineutrino, auf. Neutrinos werden zum Beispiel bei bestimmten radioaktiven Zerfällen chemischer Elemente zusammen mit einem Elektron ausgesendet.

In einer Kooperation mit Heidelberger und Mainzer Wissenschaftlern haben die Professoren Amand Fäßler und Josef Jochum von der Universität Tübingen bereits mit den theoretischen und praktischen Vorbereitungen für ein Experiment begonnen, das die Wissenslücke der Teilchenphysik schließen soll.

Daraus ist auch eine Forschergruppe der Deutschen Forschungsgemeinschaft hervorgegangen, die unter Führung der Universität Heidelberg seit April 2015 für drei Jahre mit rund zwei Millionen Euro gefördert wird („Neutrino Mass Determination by Electron Capture in Holmium-163 – ECHo“).

An der Durchführbarkeit der geplanten Messung der Neutrinomasse hatte jedoch kürzlich ein Forscher der Universität in Seattle prinzipielle Zweifel angemeldet. Professor Amand Fäßler vom Institut für Theoretische Physik der Universität Tübingen und sein Kollege Professor Fedor Simkovic von der Comenius Universität im slowakischen Bratislava haben die geplante Massebestimmung des Neutrinos daraufhin in einer theoretischen Untersuchung neu berechnet und halten den eingeschlagenen Weg weiterhin für gangbar. Der Bestimmung der Neutrinomasse sind sie damit wieder ein großes Stück nähergekommen. Ihre Studie wurde kürzlich in der Fachzeitschrift Physical Review veröffentlicht.

Den Forschern ist bereits bekannt, dass die Masse des Neutrinos im Verhältnis zu der anderer Elementarteilchen sehr gering sein muss. Die Forscher wählten daher als Messmodell einen Atomzerfall, der mit einer geringen Übergangsenergie verbunden ist, sodass die Masse des Neutrinos stärker ins Gewicht fällt. Ausgangselement ist Holmium mit der Ladungszahl 67 und der Massenzahl 163 (Anzahl der Protonen und Neutronen im Kern).

„Natürliche Vorkommen dieses Holmiumisotops sind längst zerfallen, es wird am Mainzer Institut für Kernchemie aufwendig künstlich hergestellt“, erklärt Professor Amand Fäßler. Im Experiment soll ein positiv geladenes Proton im Kern des Holmiums eines seiner atomaren, negativ geladenen Elektronen einfangen. Dadurch wird es zu einem Neutron neutralisiert, gleichzeitig wird ein Neutrino emittiert. „Die Massenzahl 163 bleibt gleich, da die Summe der Protonen und Neutronen im Kern konstant ist. Doch die Kernladung wird von 67 auf 66 reduziert. Holmium geht in einen angeregten Zustand seines Tochterelements Dysprosium über“, sagt Fäßler.

Bei der Umwandlung ergibt sich eine geringe Massendifferenz und damit nach Einstein frei werdende Energie, die sich auf die Anregung von 163-Dysprosium und das emittierte Neutrino verteilt. „Das Neutrino muss zumindest die Energie wegnehmen, die seiner Ruhemasse entspricht“, erklärt der Physiker.

„Die obere Energie des Zerfalls des angeregten Dysprosiums ist daher die Energiedifferenz der Atome Holmium und Dysprosium minus der Ruhemasse des Neutrinos, die sich hierdurch bestimmen lässt.“ Allerdings müssen die Wissenschaftler sehr präzise arbeiten, denn sie erwarten, dass die Neutrinomasse vielleicht nur etwa ein Dreißigtausendstel dieser Massendifferenz ausmacht.

Just an dieser Stelle setzte die Kritik von Professor Hamish Robertson von der University Seattle an: Er behauptete, dass eine komplizierte Anregung vom Typ zweier Elektronenlöcher in Dysprosium es unmöglich mache, die Form des Emissionsspektrums am oberen Ende genau genug zu bestimmen.

„Damit wären große Anstrengungen unserer Kooperationsarbeit und der von weiteren Gruppen, zum Beispiel in Genua und Los Alamos in den USA, wertlos geworden“, erklärt Fäßler. In den nun veröffentlichten neuen theoretischen Berechnungen konnten er und sein Kollege Fedor Simkovic jedoch zeigen, dass das obere Ende des Spektrums der Abregung von Dysprosium nicht wesentlich durch die Zwei-Elektronen-Loch-Anregungen beeinflusst wird. Sie halten die Bestimmung der Masse des Neutrinos für möglich.

Publikation:
A. Faessler, F. Simkovic: Improved description of one- and two-hole excitations after electron capture in 163Ho and the determination of the neutrino mass. Phys. Rev. C91, 045505 (April 2015).

Kontakt:
Prof. Dr. Dr. h. c. mult. Amand Fäßler
Universität Tübingen
Institut für Theoretische Physik
Telefon +49 7071 29-76370
faessler[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Berichte zu: Dysprosium Elektrons Energie Holmium Neutrino Protonen Ruhemasse Teilchenphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie