Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher prüfen, ob das Neutrino beim Einfang eines Elektrons sein Gewicht verraten wird

20.04.2015

Tübinger Physiker und sein slowakischer Kollege halten nach neuen Berechnungen die Lösung einer großen Frage der Elementarteilchenphysik für möglich

In der Elementarteilchenphysik untersuchen Wissenschaftler, aus welchen kleinsten, nicht weiter in Untereinheiten zerlegbaren Teilchen die Materie besteht und wie diese miteinander wechselwirken. In der Teilchenphysik sind mehr als 60 Arten solcher fundamentalen Bestandteile bekannt. Eines der größten noch offenen Probleme in diesem Bereich ist die Bestimmung der Masse des Neutrinos.

Neutrinos sind elektrisch neutral und treten, wie alle Teilchen ihrer Gruppe der Leptonen, stets mit ihrem Gegenstück, dem Antineutrino, auf. Neutrinos werden zum Beispiel bei bestimmten radioaktiven Zerfällen chemischer Elemente zusammen mit einem Elektron ausgesendet.

In einer Kooperation mit Heidelberger und Mainzer Wissenschaftlern haben die Professoren Amand Fäßler und Josef Jochum von der Universität Tübingen bereits mit den theoretischen und praktischen Vorbereitungen für ein Experiment begonnen, das die Wissenslücke der Teilchenphysik schließen soll.

Daraus ist auch eine Forschergruppe der Deutschen Forschungsgemeinschaft hervorgegangen, die unter Führung der Universität Heidelberg seit April 2015 für drei Jahre mit rund zwei Millionen Euro gefördert wird („Neutrino Mass Determination by Electron Capture in Holmium-163 – ECHo“).

An der Durchführbarkeit der geplanten Messung der Neutrinomasse hatte jedoch kürzlich ein Forscher der Universität in Seattle prinzipielle Zweifel angemeldet. Professor Amand Fäßler vom Institut für Theoretische Physik der Universität Tübingen und sein Kollege Professor Fedor Simkovic von der Comenius Universität im slowakischen Bratislava haben die geplante Massebestimmung des Neutrinos daraufhin in einer theoretischen Untersuchung neu berechnet und halten den eingeschlagenen Weg weiterhin für gangbar. Der Bestimmung der Neutrinomasse sind sie damit wieder ein großes Stück nähergekommen. Ihre Studie wurde kürzlich in der Fachzeitschrift Physical Review veröffentlicht.

Den Forschern ist bereits bekannt, dass die Masse des Neutrinos im Verhältnis zu der anderer Elementarteilchen sehr gering sein muss. Die Forscher wählten daher als Messmodell einen Atomzerfall, der mit einer geringen Übergangsenergie verbunden ist, sodass die Masse des Neutrinos stärker ins Gewicht fällt. Ausgangselement ist Holmium mit der Ladungszahl 67 und der Massenzahl 163 (Anzahl der Protonen und Neutronen im Kern).

„Natürliche Vorkommen dieses Holmiumisotops sind längst zerfallen, es wird am Mainzer Institut für Kernchemie aufwendig künstlich hergestellt“, erklärt Professor Amand Fäßler. Im Experiment soll ein positiv geladenes Proton im Kern des Holmiums eines seiner atomaren, negativ geladenen Elektronen einfangen. Dadurch wird es zu einem Neutron neutralisiert, gleichzeitig wird ein Neutrino emittiert. „Die Massenzahl 163 bleibt gleich, da die Summe der Protonen und Neutronen im Kern konstant ist. Doch die Kernladung wird von 67 auf 66 reduziert. Holmium geht in einen angeregten Zustand seines Tochterelements Dysprosium über“, sagt Fäßler.

Bei der Umwandlung ergibt sich eine geringe Massendifferenz und damit nach Einstein frei werdende Energie, die sich auf die Anregung von 163-Dysprosium und das emittierte Neutrino verteilt. „Das Neutrino muss zumindest die Energie wegnehmen, die seiner Ruhemasse entspricht“, erklärt der Physiker.

„Die obere Energie des Zerfalls des angeregten Dysprosiums ist daher die Energiedifferenz der Atome Holmium und Dysprosium minus der Ruhemasse des Neutrinos, die sich hierdurch bestimmen lässt.“ Allerdings müssen die Wissenschaftler sehr präzise arbeiten, denn sie erwarten, dass die Neutrinomasse vielleicht nur etwa ein Dreißigtausendstel dieser Massendifferenz ausmacht.

Just an dieser Stelle setzte die Kritik von Professor Hamish Robertson von der University Seattle an: Er behauptete, dass eine komplizierte Anregung vom Typ zweier Elektronenlöcher in Dysprosium es unmöglich mache, die Form des Emissionsspektrums am oberen Ende genau genug zu bestimmen.

„Damit wären große Anstrengungen unserer Kooperationsarbeit und der von weiteren Gruppen, zum Beispiel in Genua und Los Alamos in den USA, wertlos geworden“, erklärt Fäßler. In den nun veröffentlichten neuen theoretischen Berechnungen konnten er und sein Kollege Fedor Simkovic jedoch zeigen, dass das obere Ende des Spektrums der Abregung von Dysprosium nicht wesentlich durch die Zwei-Elektronen-Loch-Anregungen beeinflusst wird. Sie halten die Bestimmung der Masse des Neutrinos für möglich.

Publikation:
A. Faessler, F. Simkovic: Improved description of one- and two-hole excitations after electron capture in 163Ho and the determination of the neutrino mass. Phys. Rev. C91, 045505 (April 2015).

Kontakt:
Prof. Dr. Dr. h. c. mult. Amand Fäßler
Universität Tübingen
Institut für Theoretische Physik
Telefon +49 7071 29-76370
faessler[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Berichte zu: Dysprosium Elektrons Energie Holmium Neutrino Protonen Ruhemasse Teilchenphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten