Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher belauschen Zellen mit Micro-Ear

01.03.2010
Bewegungen von Molekülen und Atomen werden hörbar

Das Geräusch, das entsteht, wenn ein Medikament einen Mikroorganismus zerstört soll für Wissenschaftler bald hörbar gemacht werden können - genauso wie viele andere akustische Phänomene aus der verborgenen Welt der Zellen, berichtet die BBC.

Drei britische Institute arbeiten gemeinsam an dem sogenannten Micro-Ear, das in Zukunft in Labors zur Standardausrüstung gehören soll, so hoffen die Forscher. Dabei bedienen sie sich einer bestehenden Technologie, die bereits bei optischen Pinzetten eingesetzt wird, mit deren Hilfe winzige Bewegungen und Kräfte gemessen werden können.

Die Universitäten von Glasgow und Oxford forschen gemeinsam mit dem National Institute of Medical Research an dem Micro-Ear. Hauptbestandteil des Geräts ist ein Laser, der die Bewegungen von mikroskopisch kleinen Glas- oder Plastikperlen messen kann. Mithilfe derer können im Fall der optischen Pinzette Bewegungen anderer Objekte gemessen werden.

Das Micro-Ear kombiniert mehrere dieser Laser und soll so, ähnlich wie ein Mikrofon Bewegungen als Geräusche hörbar machen können. "Die optischen Pinzetten können Kräfte im Pikonewton-Bereich messen oder manipulieren", so Professor Jon Cooper von der Universität von Glasgow. Ein Pikonewton ist ein Millionstel der Kraft, die ein Salzkorn ausübt, wenn es auf einer Fläche liegt.

Winzigen Bewegungen werden hörbar

Vereinfacht ausgedrückt, kann man mithilfe des Micro-Ears mehrere Objekt dabei beobachten, wie sie wackeln. Diese wackelnden Objekt seien wie die Membran eines Mikrofons, so die Forscher. Eine Hochgeschwindigkeitskamera beobachtet die winzigen Bewegungen, die im folgenden in akustische Signale umgewandelt werden können. Mithilfe der Technik ist es den Wissenschaftlern bereits gelungen die Brownsche Bewegung von Atomen und Molekülen hörbar zu machen. Als nächstes soll das Micro-Ear im medizinischen Bereich zur Anwendung kommen und die Geräusche von Bakterien hörbar machen.

Georg Eckelsberger | pressetext.austria
Weitere Informationen:
http://www.gla.ac.uk
http://www.ox.ac.uk
http://www.nimr.mrc.ac.uk

Weitere Berichte zu: Atom Brownsche Bewegung Glasgow Micro-Ear Mikrofon Mithilfe Molekül Pinzetten laser system

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics