Form bestimmt Ordnung

Regelmäßig geordnete Kristalle lassen sich durch Selbstorganisation auch aus würfelförmigen Nanopartikeln herstellen, nicht nur aus kugelförmigen. Die Form der Partikel bestimmt dabei weitgehend die Struktur der Kristalle.

Das berichtet ein internationales Forscherteam aus Jülich, Stockholm, Lüttich und dem japanischen Hyogo. Die Arbeit bedeutet einen Durchbruch im Verständnis des Aufbaus sogenannter Meso-Kristalle, das sind dreidimensional geordnete Strukturen aus Nanoteilchen, die durch Selbstorganisation entstehen.

Das Forschungsergebnis begründet eine neue Art von Kristallographie, bei der die Form der Bausteine die Struktur des Kristalls und damit seine Funktionalität bestimmt. Ihre Erkenntnisse stellen die Forscher in einer aktuellen Online-Veröffentlichung des Fachmagazins „NanoLetters“ vor (DOI: 10.1021/nl200126v).

Selbstorganisation gilt als vielversprechende Möglichkeit zur Herstellung innovativer Materialien. Damit lassen sich neuartige Strukturen in der Größenordnung von Nanometern herstellen. Forscher glauben beispielsweise, dass sich so neuartige magnetische Datenspeicher verwirklichen lassen, in denen mehr Daten auf engerem Raum gespeichert werden können. Sie machen sich zunutze, dass sich Moleküle oder Nanopartikel aufgrund physikalischer Wechselwirkungen quasi von selbst zu geordneten Einheiten zusammensetzen können. Die meisten wissenschaftlichen Arbeiten beschäftigten sich bisher mit der Selbstorganisation kugelförmiger Teilchen. Wissenschaftlerinnen und Wissenschaftler aus Jülich, Stockholm, Lüttich und dem japanischen Hyogo wiesen nun erstmals eine geordnete dreidimensionale Struktur durch Selbstorganisation würfelförmiger magnetischer Bauteile nach und zeigten darüber hinaus, dass die Form der Bauteile die Struktur bestimmt.

„Wir konnten zeigen, dass sich Würfel aus magnetischen Eisenoxideinkristallen anders ordnen als Kugeln aus dem gleichen Material. Und auch Würfel sind nicht gleich Würfel“, berichtet Dr. Sabrina Disch, Chemikerin am Jülich Centre for Neutron Science JCNS und am Peter Grünberg Institut. Die Untersuchungen der Forscher zeigen, dass bereits Würfel, die an den Ecken in verschiedenem Maße abgeflacht sind, unterschiedliche kristalline Anordnungen bilden. „Eine gezielte Auswahl der richtigen Teilchenform wird es zukünftig ermöglichen, Materialien gezielt maßzuschneidern. Davon profitieren Grundlagenforschung und angewandte Forschung“, erwartet Prof. Thomas Brückel, Direktor am Jülich Centre for Neutron Science JCNS und am Peter Grünberg Institut.

Bei den Experimenten der Forscher kamen Würfel mit mäßig abgeflachten Ecken zum Einsatz. Sie ordneten sich mit den abgeflachten Ecken zueinander an, sodass jeder Würfel acht direkte Nachbarn hat (tetragonal-raumzentriert). Bei geringerer Abflachung, also spitzeren Ecken, sollten die Würfel sich einfach kubisch, d.h. Fläche an Fläche, anordnen mit jeweils sechs direkten Nachbarn pro Würfel. Dies zeigten Abschätzungen der relativen Wichtigkeit der magnetischen und elektrischen Wechselwirkungen zwischen den Bauteilen. Entscheidend für die Ordnung sind die sogenannten Van-der-Waals-Kräfte, so die Forscher. An den stark abgeflachten Ecken ist die anziehende Kraft zwischen den Teilchen stärker als zwischen den Kanten und Flächen, sodass eine Anordnung vorteilhaft ist, die die Ecken nahe zusammenbringt.

Für ihre Versuche brachten die Forscher eine Lösung mit nanometergroßen Eisenoxidwürfeln auf eine extrem glatte Fläche aus Germanium auf und ließen die Lösung so langsam verdunsten, dass die Teilchen ausreichend Zeit zur Selbstorganisation hatten. Ein Magnetfeld unterstützte den Prozess, und Trennschichten um die Würfel verhinderten ein Zusammenklumpen. Mit Hilfe elektronenmikroskopischer Methoden und Streumethoden konnten die Forscher die dreidimensionale Struktur nachweisen. Außerdem vermaßen die Forscher die Würfel unter dem Elektronenmikroskop und bestimmten so die Form der Ecken.

Originalveröffentlichung:
Shape Induced Symmetry in Self-Assembled Mesocrystals of Iron Oxide Nanocubes;
Sabrina Disch, Erik Wetterskog, Raphaël P. Hermann, German Salazar-Alvarez, Peter Busch, Thomas Brückel, Lennart Bergström, Saeed Kamali;

NanoLetters 9. März 2011 (Web); DOI: 10.1021/nl200126v

The spin structure of magnetic nanoparticles and in magnetic nanostructures, Dissertation 2010, Sabrina Disch, Forschungszentrum Jülich/RWTH Aachen

Weitere Informationen:
Forschungszentrum Jülich: www.fz-juelich.de
Forschung am Institut Streumethoden (PGI-4/JCNS-2): http://www.fz-juelich.de/pgi/pgi-4/
Ansprechpartner:
Dr. Sabrina Disch,
Forschungszentrum Jülich, Jülich Centre for Neutron Science JCNS,
52425 Jülich, Tel. 02461 61-4762, E-Mail: s.disch@fz-juelich.de
Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin,
Forschungszentrum Jülich, Jülich Centre for Neutron Science JCNS/ Peter Grünberg Institut PGI, 52425 Jülich,

Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Media Contact

Angela Wenzik Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer