Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Faser mit Filtereffekt

27.07.2012
Eine einfache Verdrehung um ihre Längsachse verwandelt spezielle Lichtleiter in Filter

Forscher des Max-Planck-Instituts für die Physik des Lichts in Erlangen haben diesen Effekt bei photonischen Kristallfasern detailliert gemessen und erstmals auch theoretisch erklärt. Ihre Forschungsergebnisse ermöglichen neue Anwendungen in der optischen Nachrichtenübertragung sowie beim Bau von Lasern, Sensoren und Verstärkern für Licht.


Aufbau einer photonischen Kristallfaser (PCF).
© Wong et al., Science 2012,
doi: 10.1126/science.12

Glasfasern dienen meist zum Transport von Licht über große Strecken – zum Beispiel für die schnelle Datenübertragung im Internet. Photonische Kristallfasern (PCF, photonic crystal fiber) sind eine neuartige Variante solcher Lichtwellenleiter, die derzeit vor allem in der Grundlagenforschung eingesetzt werden und deren Querschnitt ein wenig an Bienenwaben erinnert: Die runde Faser ist von winzigen hohlen Röhren durchzogen, die ihren Kern umgeben. Sie sorgen dafür, dass das Licht sich nur längs des Kerns bewegt und mit nur geringen Verlusten transportiert werden kann.

Das Übertragungsverhalten der photonischen Kristallfasern ändert sich aber deutlich, wenn man sie um ihre Längsachse verdreht: Bestimmte Wellenlängen werden dann wesentlich schlechter übertragen – aus dem Lichtleiter ist eine Spirale geworden, die wie ein Filter wirkt. Dieses Verhalten lässt sich sehr einfach über die Verdrehung steuern: Nimmt sie zu, verschieben sich die Einbrüche bei der Lichtübertragung hin zu größeren Wellenlängen.

Diesen Effekt hat das Erlanger Team um Philip Russell im Detail studiert. Dazu haben die Wissenschaftler das eine Ende einer PCF fest eingespannt, während sich das andere Ende mit einem Motor präzise um seine Längsachse verdrehen ließ. Ein Kohlendioxid-Laser bestrahlte während der Experimente die Faser und sorgte dafür, dass das Glasmaterial ausreichend flexibel war. Als Lichtquelle setzten die Forscher eine „Superkontinuumquelle“ ein, die über einen weiten Bereich von Wellenlängen nahezu gleichmäßig Licht abgeben kann. Die Übertragung dieses Lichts durch die photonische Kristallfaser wurde mit einem optischen Spektrumanalysator gemessen – er zeigte an, welche Wellenlängen besonders stark unterdrückt wurden.

Im Experiment brach die Übertragung im Wellenlängenbereich von 400 bis 1000 Nanometern an vier Stellen deutlich ein, die sich erwartungsgemäß bei stärkerer Verdrehung der PCF zu größeren Wellenlängen verschoben. Zudem stellten die Wissenschaftler eine sehr gute Übereinstimmung mit ihren Simulationen fest: „Frühere Studien haben die Filterwirkung mit einer Art Gittereffekt erklärt“, sagt Philip Russell. „Dann müssten die Wellenlängen der Übertragungsminima aber mit der Länge der Windungen zunehmen. Unsere Messungen und Simulationen zeigen aber, dass es genau umgekehrt sein muss – die früheren Erklärungsversuche waren also falsch.“

Russell erklärt den Filter-Effekt mit einer Analogie aus dem 19. Jahrhundert: 1878 hatte der englische Physiker John William Strutt (Lord Rayleigh) in der kuppelförmigen „Flüstergalerie“ der Londoner St. Pauls-Kathedrale beobachtet, dass manche Frequenzen besonders gut übertragen werden. Solche Resonanzen gibt es auch in der Optik – wenn beispielsweise Licht in kleinen Glaskugeln hin und her läuft und sich bei bestimmten Frequenzen stark aufschaukelt.

Etwas Vergleichbares widerfährt den ausgefilterten Wellenlängen in der photonischen Kristallfaser: Sie bilden ebenfalls Resonanzen, und ihre Energie verlässt seitlich die Faser statt geradeaus zu fließen – darum kommt nur noch sehr wenig davon am anderen Ende an. „Mit einer empfindlichen Kamera könnte man sehen, dass die Seite der Faser in den Farben leuchtet, die besonders stark unterdrückt werden“, erklärt Russell.

Der Wissenschaftler sieht interessante technische Anwendungen des Effektes: „Besonders attraktiv daran ist, dass wir die photonischen Kristallfasern noch nach ihrer Produktion fast beliebig verdrehen können. So lassen sich auf höchst flexible Weise Filter für bestimmte Wellenlängen herstellen.“ Solche Komponenten spielen in vielen Bereichen eine wichtige Rolle – bei der optischen Datenübertrag ebenso wie für Sensoren, Faserlaser und Verstärker für Licht. Zudem lässt sich die Verdrehung längs der Faser variieren, wodurch sich ganz unterschiedliche Filter realisieren lassen. Und schließlich ist es dadurch möglich, die linearen und nichtlinearen Leitungseigenschaften der Fasern zu verändern und damit zwei für die Erzeugung eines Superkontinuums wichtige Parameter zu beeinflussen.

Ansprechpartner

Dr. Sabine König
Max-Planck-Institut für die Physik des Lichts
Telefon: +49 9131 6877-500
Fax: +49 9131 6877-199
Email: sabine.koenig@­mpl.mpg.de
Originalveröffentlichung
Excitation of Orbital Angular Momentum Resonances in Helically Twisted Photonic Crystal Fiber
G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, P. St. J. Russell
Science 27 July 2012: Vol. 337 no. 6093 pp. 446-449,
DOI: 10.1126/science.1223824

Dr. Sabine König | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5925582/filter_photonische-kristallfasern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie