Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extrem schnelle Suchalgorithmen für den Quantencomputer

10.07.2009
Wenn man eine Münze wirft, liegen danach entweder Kopf oder Zahl oben. Eine atomare "Münze" kann dagegen nach dem Wurf eine Überlagerung aus Kopf und Zahl zeigen.

Überlässt man einer solchen Münze die Entscheidung, wohin ein Quantenteilchen wandern soll, treten ungewöhnliche Effekte auf. Diese Effekte haben nun Physiker der Universität Bonn erstmals in einem Experiment mit Caesium-Atomen zeigen können. Ihre Studie erscheint in der kommenden Ausgabe des Wissenschafts-Magazins "Science". Sie ist ein erster Schritt auf dem Weg zu extrem schnellen Suchalgorithmen für den Quantencomputer.

Mal angenommen, wir würden folgendes Experiment durchführen: Wir drücken einer Versuchsperson - nennen wir sie der Einfachheit halber Hans - eine Münze in die Hand. Hans soll sie nun mehrmals hintereinander werfen. Immer wenn sie "Kopf" zeigt, soll er einen Schritt nach rechts machen. Liegt dagegen "Zahl" oben, geht es einen Schritt nach links. Nach 10 Würfen schauen wir, wo Hans steht. Wahrscheinlich wird er sich nicht allzu weit vom Ausgangspunkt entfernt haben: "Kopf" und "Zahl" fallen in etwa gleich häufig. Um 10 Schritte nach rechts zu gehen, müsste Hans dagegen 10 Mal hintereinander "Kopf" werfen. Und das kommt eher selten vor.

Nun sei unser Hans ein sehr geduldiger Mensch - so geduldig, dass er dieses Experiment 1.000 Mal hintereinander durchführt. Nach jedem Durchgang notieren wir seinen Standort. Wenn wir am Ende das Ergebnis als Grafik auftragen, erhalten wir eine typische Glockenkurve: Sehr häufig endet Hans nach 10 Würfen irgendwo in der Nähe des Startpunkts. Weit links oder rechts finden wir ihn dagegen sehr selten.

Das Experiment nennt sich "Zufallswanderung", englisch: "random walk". Das Phänomen ist in vielen Bereichen der modernen Wissenschaft zu finden, etwa als Brownsche Molekularbewegung. In der Welt der Quantenphysik gibt es ein Analogon mit verblüffenden, neuen Eigenschaften, den "quantum walk". Bisher war er mehr oder weniger ein theoretisches Konstrukt. Doch Physiker der Universität Bonn haben nun tatsächlich einen solchen "quantum walk" durchgeführt.

Als Läufer und gleichzeitig Münze diente ihnen ein einzelnes Caesium-Atom, das sie mit einer Art Pinzette aus Laserstrahlen festhielten. Atome können verschiedene quantenmechanische Zustände annehmen - ähnlich wie bei einem Geldstück entweder Kopf oder Zahl oben liegt. Doch im Mikrokosmos ist alles ein wenig komplizierter: Quantenteilchen können nämlich in einer Überlagerung verschiedener Zustände existieren. Es liegen dann gewissermaßen gleichzeitig "ein bisschen Kopf" und "ein wenig Zahl" oben. Physiker sprechen auch von Superposition.

Die Bonner Physiker haben ihr Caesium-Atom mit zwei Förderbändern aus Laserstrahlen in entgegengesetzte Richtungen gezogen - den "Kopf"-Anteil nach rechts, den "Zahl"-Anteil nach links. "So konnten wir die beiden Zustände um Bruchteile eines tausendstel Millimeters gegeneinander verschieben", erklärt Dr. Artur Widera vom Bonner Institut für Angewandte Physik. Danach "würfelten" die Forscher neu und brachten jeden der beiden Bestandteile wieder in eine Superposition aus Kopf und Zahl.

Nach mehreren Schritten dieses "quantum walks" befindet sich ein solches auseinander gezerrtes Caesium-Atom gewissermaßen überall. Erst wenn man seine Position misst, "entscheidet" es sich, an welcher Stelle des "Laufstegs" es auftauchen möchte. Die Wahrscheinlichkeit für seine Position wird durch einen zweiten Effekt der Quantenmechanik dominiert: Zwei Teile des Atoms können sich nämlich gegenseitig verstärken oder auslöschen; der Physiker spricht wie bei Licht von Interferenz.

Wie im Beispiel mit dem Münzwerfer Hans kann man diesen "quantum walk" nun viele Male wiederholen. Man erhält dann ebenfalls eine Kurve, die die Aufenthalts-Wahrscheinlichkeit des Atoms widerspiegelt. Und genau das haben die Bonner Physiker gemessen. "Unsere Kurve unterscheidet sich deutlich von den Resultaten des klassischen random walks und hat ihr Maximum nicht in der Mitte, sondern an den Rändern", betont Wideras Kollege Michal Karski. "Das ist exakt, was wir nach theoretischen Überlegungen erwarten und was den quantum walk so attraktiv für Anwendungen macht." Zum Vergleich haben die Forscher nach jedem einzelnen "Münzwurf" die quantenmechanische Superposition zerstört. Dabei wird aus dem "quantum walk" ein "random walk", und das Caesium Atom verhält sich wie Hans. "Und genau das ist der Effekt, den wir sehen", sagt Karski.

Die Gruppe um Professor Dr. Dieter Meschede arbeitet bereits seit vielen Jahren an der Entwicklung so genannter Quantencomputer. Mit dem "quantum walk" ist dem Team nun ein weiterer bahnbrechender Schritt auf diesem Weg gelungen. "Mit dem von uns gezeigten Effekt lassen sich ganz neue Algorithmen realisieren", erklärt Widera. Ein Beispiel sind Suchvorgänge: Will man heute in einer Reihe von Nullen eine einzige Eins aufspüren, muss man alle Ziffern einzeln überprüfen. Der Aufwand steigt daher linear mit der Zahl der Ziffern. Bei einem "quantum walk"-Algorithmus kann der Wanderer dagegen an vielen Stellen gleichzeitig suchen. Die Suche nach der sprichwörtlichen Nadel im Heuhaufen würde dadurch extrem beschleunigt.

Kontakt:
Dr. Artur Widera
Institut für Angewandte Physik der Universität Bonn
Telefon: 0228/73-3471 oder -3477; E-Mail: widera@uni-bonn.de
Website: http://agmeschede.iap.uni-bonn.de/
Michal Karski
Telefon: 0228/73-3489; E-Mail: karski@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten