Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Experiment im All soll Äquivalenzprinzip mit bisher unerreichter Genauigkeit testen

09.05.2016

Französische Forscher stellen das Fallgesetz auf den Prüfstand − die PTB liefert dazu hochpräzise Testmassen

Haben sich Galilei, Newton und Einstein getäuscht? Zumindest ein kleinwenig? Dank ihnen wissen wir heute, dass schwere und träge Masse gleich sind. Im Vakuum fallen daher alle Gegenstände gleich schnell zu Boden, egal wie schwer sie sind. Diese 400 Jahre alte Entdeckung hält bisher jeder Überprüfung stand.


Mithilfe zweier in der PTB gefertigter Zylinder soll an Bord eines Satelliten überprüft werden, ob sich schwere und träge Masse unterscheiden.

PTB

Wissenschaftler bestätigen das sogenannte Äquivalenzprinzip mit einer Genauigkeit von 10-13, also bis auf ein Zehnbillionstel genau. Doch moderne physikalische Theorien, wie die String-Theorie, gehen davon aus, dass ganz weit hinter dem Komma der Beweis dafür warten könnte, dass sich träge und schwere Masse unterscheiden.

Französische Forscher wollen das Prinzip nun erneut auf die Probe stellen – mit tatkräftiger Unterstützung durch den Fachbereich „Wissenschaftlicher Gerätebau“ der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig. Dort entstanden zwei mikrometergenau hergestellte Hohlzylinderpaare, die seit dem 25. April 2016 im Rahmen des MICROSCOPE-Projektes in einem Satelliten um die Erde kreisen. Das Fallgesetz soll damit mit bisher unerreichter Genauigkeit getestet werden.

Hält man einen Gegenstand in der Hand, spürt man, wie dieser nach unten drückt. Die Erdanziehungskraft zieht ihn zum Boden. Öffnet man die Hand, fällt er – dafür sorgt die sogenannte schwere Masse. Würden wir gemeinsam mit dem Gegenstand fallen, würden wir die Schwerkraft nicht mehr spüren. Dabei wirkt sie immer noch. Allerdings wird sie durch eine entgegengesetzt wirkende Kraft aufgehoben: die Trägheitskraft. Diese widersetzt sich der Beschleunigung. Warum sich schwere und träge Masse gegenseitig genau aufheben, ist noch immer ein Rätsel.

Einige Forscher glauben daher, dass das Fallgesetz nicht stimmen kann. Die String-Theorie sagt beim Äquivalenzprinzip eine Unsicherheit im Bereich von 10-14 bis 10-17 voraus. Durch das MICROSCOPE-Projekt könnte die Physik in diese Bereiche vorstoßen. Es soll eine Messgenauigkeit von bis zu 10-15 ermöglichen. Das wäre auf der Erde nicht messbar.

Denn dort lässt sich der freie Fall im luftleeren Raum nicht lange genug simulieren. Anders sieht es im Weltraum aus: An Bord eines Satelliten „fallen“ die Zylinder (Testmassen) in den kommenden zwei Jahren auf einer sonnensynchronen Umlaufbahn in etwa 700 Kilometer Höhe um die Erde. Dabei wird sich zeigen, ob eine der Testmassen eine andere Beschleunigung erfährt.

Damit das gelingen kann, müssen die Testobjekte die gleiche Form haben. „Wir haben zwei ineinander gelagerte Zylinder gewählt, da diese den gleichen Schwerpunkt haben“, erklärt Dr. Daniel Hagedorn, Leiter der Arbeitsgruppe für Oberflächentechnologie in der PTB. Beim ersten Zylinderpaar bestehen die Massen aus dem gleichen Material: Platin-Rhodium (PtRh10). Beim zweiten Zylinderpaar besteht der äußere Zylinder aus einer Titan-Legierung (TiAl6V4), einem aus dem Flugzeugbau bekannten Material. Der innere Zylinder besteht wie das erste Zylinderpaar aus Platin-Rhodium.

„Wenn wir einen Unterschied in der Beschleunigung sehen, dann bei dem uneinheitlichen Zylinderpaar“, sagt Hagedorn. Gemessen würde dann die Verschiebung des Schwerpunkts der Zylinder. Das einheitliche Paar dient zur Kontrolle. Sollten beide etwas anzeigen, liegt es an den Instrumenten. Damit das Experiment gelingt, müssen die Testmassen immer gleich im Raum ausgerichtet sein. Für die richtige Bahn und den richtigen Winkel sorgt der Satellit. Elektrostatische Kraftfelder stützen die Zylinder.

Die Zylinder exakt gleich anzufertigen, war die größte Herausforderung für die Braunschweiger Gerätebauer. Mehr als fünf Jahre haben sie daran gemessen und gearbeitet. „Das war ein wahnsinnig komplexer Prozess“, sagt Hagedorn. Um die Oberflächen zu perfektionieren, mussten die Drehgeschwindigkeit, die Menge des Kühlschmiermittels, die Art und Form des Diamanten zum Schneiden, der Verschleiß der Werkzeuge und vieles mehr erst einmal erprobt werden. Denn an die benötigte Genauigkeit von weniger als drei Mikrometer hat sich bisher noch niemand herangetraut.

„Wir waren mutig genug, das zu probieren“, sagt Hagedorn. Mit Erfolg: Bei der Form gelang eine Genauigkeit von etwa einem Mikrometer. Die durchschnittliche Rauheit der Oberfläche liegt im Bereich von wenigen zehn Nanometern.

Finanziert wird dieses Unterfangen zu 90 Prozent von der französischen Raumfahrtagentur CNES. Für die Forschung sind die Einrichtungen ONERA (Office national d’études et de recherches aérospatiales) und OCA (Observatoire de la Côte d’Azur) verantwortlich. Neben der PTB unterstützt auch das Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen das Projekt. Dort wurde getestet, ob die Zylinder für das Experiment in der Schwerelosigkeit geeignet sind.

Das Deutsche Zentrum für Luft- und Raumfahrt beteiligte sich dabei an der Finanzierung. Zwei Jahre werden die Testmassen im Orbit kreisen – und dabei die Erde mehr als 1000 Mal umrunden. Ob die dabei entstehenden Daten das Verständnis von Raum und Zeit durcheinander bringen, bleibt abzuwarten. ms/ptb

Ansprechpartner in der PTB
Dr. Daniel Hagedorn, PTB-Arbeitsgruppenleiter 5.54 Oberflächentechnologie, Telefon: (0531) 592-5540, E-Mail: daniel.hagedorn@ptb.de

Weitere Informationen
• MICROSCOPE-Projekt https://microscope.cnes.fr/en/MICROSCOPE/index.htm
• Pressefotos zum Download http://cnes.photonpro.net/cnes/categories/654

Weitere Informationen:

http://www.ptb.de/cms/presseaktuelles/journalisten/presseinformationen/presseinf...

Michael Schnatz | Physikalisch-Technische Bundesanstalt (PTB)

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie