Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Exakte Messung der Polarisierbarkeit von Pionen stützt Standardmodell

11.02.2015

Pionen genannte Kernteilchen tragen wesentlich zur sogenannten starken Wechselwirkung bei. Sie ist die Kraft, die Atomkerne zusammenhält und für die Masse der uns umgebenden Materie verantwortlich ist. Erstmals ist es Physikern nun gelungen, die Verformbarkeit von Pionen exakt zu bestimmen.

Das Ergebnis, zu dem Physiker der Technischen Universität München (TUM) maßgeblich beigetragen haben, stimmt gut mit den theoretischen Vorhersagen überein und revidiert frühere Messungen, deren Ergebnisse nicht mit dem Standardmodell der Physik vereinbar waren.


Das Experiment am CERN: Die Nickelscheibe befindet sich im Zentrum des blauen Stahlzylinders. Vier Detektormodule vermessen mit höchster Präzision die Ablenkung der Pionen.

Foto: TUM


Eines der vier Detektor-Module des Experiments. Das an der TUM entwickelte Silizium-Modul kann rund 10.000 Teilchen pro Sekunde detektieren.

Foto: TUM

Die gesamte sichtbare Materie im Universum besteht aus winzigen Elementarteilchen, aus Quarks und Elektronen. Die Bausteine der Atomkerne wiederum, die Protonen und Neutronen, sind aus drei Quarks aufgebaut. Ein Gold-Atomkern etwa besteht aus 79 Protonen und 118 Neutronen. Sie tauschen so genannte Pionen aus, wodurch der Atomkern zusammenhält.

Pionen bestehen aus einem Quark und einem Antiquark, welche wiederum von der starken Wechselwirkung fest aneinander gebunden werden. Das Ausmaß, in dem diese beiden Bestandteile voneinander entfernt werden können, ist daher ein direktes Maß für die Stärke der Bindungskraft zwischen den Quarks und damit für die starke Wechselwirkung.

Extrem starkes elektrisches Feld

Um die Verformbarkeit der geladenen Pionen – Physiker sprechen auch von ihrer Polarisierbarkeit – zu messen, schossen die Wissenschaftler des COMPASS-Experiments am CERN einen Pionen-Strahl auf eine Nickelscheibe. Die Pionen näherten sich den Nickel-Atomkernen dabei auf Distanzen von im Mittel nur zwei Kernradien und erfuhren dabei das sehr starke elektrische Feld des Nickelkerns.

Dieses elektrische Feld verursacht eine Polarisierung der Pionen und ändert ihre Flugbahn unter Aussendung von Photonen, also Lichtteilchen. Aus der Messung der Photonen und der Ablenkungen der Pionen für eine große Anzahl von 63.000 Pionen konnten die Wissenschaftler die Polarisierbarkeit der Teilchen bestimmen.

Das Ergebnis zeigt, dass die Pionen nur zu weit weniger als ein Tausendstel ihres Volumens deformierbar sind. „Das Experiment ist – trotz der hohen Teilchenenergien am CERN – eine große Herausforderung", sagt Professor Stephan Paul vom Physik-Lehrstuhl E18 an der TU München und Koordinator der Exzellenzclusters Universe. „Der Effekt der Pion-Polarisierbarkeit ist winzig. Dies macht die Stärke der inneren Kräfte besonders deutlich."

Ergebnisse revidieren frühere Messungen

Erste in den 1980er Jahren durchgeführte Messungen hatten Ergebnisse geliefert, die im Widerspruch zu den theoretischen Vorhersagen standen und die Physiker vor große Rätsel gestellt. „Die Theorie der starken Wechselwirkung ist einer der Grundpfeiler unseres Verständnisses der Natur auf der Ebene der Elementarteilchen”, sagt PD Dr. Jan Friedrich, Wissenschaftler am Physik-Lehrstuhl E18 der TUM und Mitglied des Exzellenzclusters Universe, der die Datenanalyse der COMPASS-Kollaboration leitete. „Daher ist die gute Übereinstimmung dieses Ergebnisses mit der Theorie von großer Bedeutung.”

Das COMPASS-Experiment wird seit 2002 am Super Proton Synchrotron (SPS) betrieben, dem zweitgrößten Beschleunigerring am CERN. Zur Kollaboration gehören rund 220 Physiker aus 13 Ländern. In Deutschland sind die Unis in Bielefeld, Bochum, Bonn, Erlangen-Nürnberg, Freiburg, Mainz und München beteiligt sowie die Technische Universität München, bei der die Verantwortung für die Datenanalyse lag.

Die Forschungsarbeiten wurden in Deutschland unterstützt vom Bundesministerium für Bildung und Forschung (BMBF), der EU-Forschungsförderungslinie FP7 und der Deutschen Forschungsgemeinschaft (Exzellenzcluster Origin and Structure of the Universe).

Publikation:

Measurement of the charged-pion polarizabilty – The COMPASS Collaboration
Phys. Rev. Lett. 114, 2015
Link: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.062002

Kontakt:

Prof. Dr. Stephan Paul
Technische Universität München
Physik Department, Lehrstuhl E18
James-Franck-Str. 1, 85748 Garching, Germany
Tel. +49 89 289 12571 – E-Mail: Stephan.paul@tum.de –
Internet: http://www.e18.ph.tum.de/

PD Dr. Jan Friedrich
Technische Universität München,
Physik Department, Lehrstuhl E18
James-Franck-Str. 1, 85748 Garching, Germany
Tel. +49 89 289 12586 – E-Mail: jan@tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik