Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Exakte Messung der Polarisierbarkeit von Pionen stützt Standardmodell

11.02.2015

Pionen genannte Kernteilchen tragen wesentlich zur sogenannten starken Wechselwirkung bei. Sie ist die Kraft, die Atomkerne zusammenhält und für die Masse der uns umgebenden Materie verantwortlich ist. Erstmals ist es Physikern nun gelungen, die Verformbarkeit von Pionen exakt zu bestimmen.

Das Ergebnis, zu dem Physiker der Technischen Universität München (TUM) maßgeblich beigetragen haben, stimmt gut mit den theoretischen Vorhersagen überein und revidiert frühere Messungen, deren Ergebnisse nicht mit dem Standardmodell der Physik vereinbar waren.


Das Experiment am CERN: Die Nickelscheibe befindet sich im Zentrum des blauen Stahlzylinders. Vier Detektormodule vermessen mit höchster Präzision die Ablenkung der Pionen.

Foto: TUM


Eines der vier Detektor-Module des Experiments. Das an der TUM entwickelte Silizium-Modul kann rund 10.000 Teilchen pro Sekunde detektieren.

Foto: TUM

Die gesamte sichtbare Materie im Universum besteht aus winzigen Elementarteilchen, aus Quarks und Elektronen. Die Bausteine der Atomkerne wiederum, die Protonen und Neutronen, sind aus drei Quarks aufgebaut. Ein Gold-Atomkern etwa besteht aus 79 Protonen und 118 Neutronen. Sie tauschen so genannte Pionen aus, wodurch der Atomkern zusammenhält.

Pionen bestehen aus einem Quark und einem Antiquark, welche wiederum von der starken Wechselwirkung fest aneinander gebunden werden. Das Ausmaß, in dem diese beiden Bestandteile voneinander entfernt werden können, ist daher ein direktes Maß für die Stärke der Bindungskraft zwischen den Quarks und damit für die starke Wechselwirkung.

Extrem starkes elektrisches Feld

Um die Verformbarkeit der geladenen Pionen – Physiker sprechen auch von ihrer Polarisierbarkeit – zu messen, schossen die Wissenschaftler des COMPASS-Experiments am CERN einen Pionen-Strahl auf eine Nickelscheibe. Die Pionen näherten sich den Nickel-Atomkernen dabei auf Distanzen von im Mittel nur zwei Kernradien und erfuhren dabei das sehr starke elektrische Feld des Nickelkerns.

Dieses elektrische Feld verursacht eine Polarisierung der Pionen und ändert ihre Flugbahn unter Aussendung von Photonen, also Lichtteilchen. Aus der Messung der Photonen und der Ablenkungen der Pionen für eine große Anzahl von 63.000 Pionen konnten die Wissenschaftler die Polarisierbarkeit der Teilchen bestimmen.

Das Ergebnis zeigt, dass die Pionen nur zu weit weniger als ein Tausendstel ihres Volumens deformierbar sind. „Das Experiment ist – trotz der hohen Teilchenenergien am CERN – eine große Herausforderung", sagt Professor Stephan Paul vom Physik-Lehrstuhl E18 an der TU München und Koordinator der Exzellenzclusters Universe. „Der Effekt der Pion-Polarisierbarkeit ist winzig. Dies macht die Stärke der inneren Kräfte besonders deutlich."

Ergebnisse revidieren frühere Messungen

Erste in den 1980er Jahren durchgeführte Messungen hatten Ergebnisse geliefert, die im Widerspruch zu den theoretischen Vorhersagen standen und die Physiker vor große Rätsel gestellt. „Die Theorie der starken Wechselwirkung ist einer der Grundpfeiler unseres Verständnisses der Natur auf der Ebene der Elementarteilchen”, sagt PD Dr. Jan Friedrich, Wissenschaftler am Physik-Lehrstuhl E18 der TUM und Mitglied des Exzellenzclusters Universe, der die Datenanalyse der COMPASS-Kollaboration leitete. „Daher ist die gute Übereinstimmung dieses Ergebnisses mit der Theorie von großer Bedeutung.”

Das COMPASS-Experiment wird seit 2002 am Super Proton Synchrotron (SPS) betrieben, dem zweitgrößten Beschleunigerring am CERN. Zur Kollaboration gehören rund 220 Physiker aus 13 Ländern. In Deutschland sind die Unis in Bielefeld, Bochum, Bonn, Erlangen-Nürnberg, Freiburg, Mainz und München beteiligt sowie die Technische Universität München, bei der die Verantwortung für die Datenanalyse lag.

Die Forschungsarbeiten wurden in Deutschland unterstützt vom Bundesministerium für Bildung und Forschung (BMBF), der EU-Forschungsförderungslinie FP7 und der Deutschen Forschungsgemeinschaft (Exzellenzcluster Origin and Structure of the Universe).

Publikation:

Measurement of the charged-pion polarizabilty – The COMPASS Collaboration
Phys. Rev. Lett. 114, 2015
Link: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.062002

Kontakt:

Prof. Dr. Stephan Paul
Technische Universität München
Physik Department, Lehrstuhl E18
James-Franck-Str. 1, 85748 Garching, Germany
Tel. +49 89 289 12571 – E-Mail: Stephan.paul@tum.de –
Internet: http://www.e18.ph.tum.de/

PD Dr. Jan Friedrich
Technische Universität München,
Physik Department, Lehrstuhl E18
James-Franck-Str. 1, 85748 Garching, Germany
Tel. +49 89 289 12586 – E-Mail: jan@tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie