Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals Quantenverschränkung in 100 Dimensionen

25.03.2014

Ein wesentliches Phänomen der Quantenphysik sind sogenannte Verschränkungszustände, wobei Teilchen in einer scheinbar paradoxen Art und Weise miteinander verbunden sind.

Verschränkungszustände bilden die Grundlage für neuartige technologische Anwendungen. In vielen Fällen kann deren Nützlichkeit durch erhöhte Komplexität gesteigert werden.


Beispiel einer komplexen Struktur von Photonen, die im Verschränkungs-Experiment benützt wurden.

(Foto: Mario Krenn, Copyright: Universität Wien)


Beispiel einer komplexen Struktur von Photonen, die im Verschränkungs-Experiment benützt wurden.

(Foto: Mario Krenn, Copyright: Universität Wien)

Ein Forscherteam rund um den Wiener Physiker Anton Zeilinger hat nun die komplexesten Verschränkungszustände nachgeweisen, die bislang mit Photonen – elementaren Lichtteilchen – geschaffen wurden. Die Forschungsergebnisse, die in der renommierten Fachzeitschrift PNAS erscheinen, bringen die effiziente Nutzung von Quanteneffekten einen Schritt weiter.

Als Quantenverschränkung wird ein Effekt bezeichnet, der es zwei oder mehreren Teilchen scheinbar erlaubt, einander ohne Zeitverzögerung über beliebige räumliche Distanzen hinweg zu beeinflussen. Obwohl dieses Verhalten im Rahmen der Quantenphysik an sich weitgehend verstanden ist, widerspricht es unserer Intuition.

Verschränkungszustände können bei sehr praktischen Anwendungen nützlich sein. Beispielsweise werden in der Quantenkryptographie Quanteneffekte genutzt, um verschlüsselte Nachrichten gegen Lauschattacken zu schützen, indem ein ungewünschter Zugriff auf die übermittelten Informationen praktisch unmöglich ist.

Bei quantenkryptographischen Experimenten werden Lichtteilchen (Photonen) verwendet, um Informationen zu übertragen. Photonen können auf verschiedene Arten Verschränkungszustände miteinander teilen – je komplexer diese jedoch sind, umso nützlicher sind sie. Eine Möglichkeit, komplexe Verschränkungszustände zu erzeugen, ist, eine große Zahl von Photonen miteinander wechselwirken zu lassen. Sobald aber mehr als zwei oder drei Photonen im Spiel sind, wird es enorm schwierig. Die Quantentechnologie steht hier vor einer wirklich großen Herausforderung.

Die Wiener Physiker, allen voran Mario Krenn, Doktorand in Zeilingers Gruppe an der Universität Wien und Erstautor der Arbeit, sowie Anton Zeilinger, haben nun in Zusammenarbeit mit einem Forscher aus Barcelona eine alternative Methode gefunden, Verschränkungszustände hoher Komplexität zu erzeugen.

Dazu nutzten sie räumliche Strukturen, die Photonen besitzen können, und setzten einen speziellen Kristall ein, in welchem Photonenpaare mit verschränkten räumlichen "Mustern" entstehen. Insgesamt haben die Forscher mehr als 200.000 verschiedene Messungen an über 750 Millionen Photonenpaaren vorgenommen. Um die enthaltene Verschränkung zu analysieren, mussten darüber hinaus neue mathematische Hilfsmittel entwickelt werden.

Das Resultat all dieser Bemühungen: Der Nachweis, dass Verschränkungszustände erzeugt wurden, für die normalerweise anstelle von zwei Photonen 13 benötigt werden. "Die analysierten Photonen waren mindestens 100-dimensional verschränkt", sagt Mario Krenn, Physiker an der Universität Wien und Erstautor der Arbeit. "Dass wir erstmalig einen solchen Grad an Komplexität mit zwei Photonen erreicht haben, ist ein wesentlicher Fortschritt, nicht zuletzt hinsichtlich praktischer Anwendungen", ergänzt Anton Zeilinger, Professor für Quantenphysik an der Universität Wien.

Ziel ist es, die kontrollierte Erzeugung von solch komplexen Zuständen für technologische Anwendungen nutzbar zu machen. Die Methode der Wiener Forscher wird dazu beitragen, grundlegende Aspekte der Quantenmechanik tiefer zu erkunden. Nachwuchswissenschafter Mario Krenn erklärt: "Eine offene Frage ist, ob die Menge an Information, welche räumlich getrennte Teilchen durch Verschränkung teilen können, fundamental beschränkt ist. Die Zustände, die wir nun erzeugen können, werden es ermöglichen, Experimente zur Beantwortung dieser Frage durchzuführen. Das war bislang nicht möglich."

Das Projekt wurde gefördert durch den Europäischen Forschungsrat (ERC) sowie dem österreichischen Fonds zur Förderung der wissenschaftlichen Forschung (FWF).

Publikation in "Proceedings of the National Academy of Sciences of the United States of America" (PNAS):
Generation and Confirmation of a (100x100)-dimensional entangled Quantum System.
Mario Krenn, Marcus Huber, Robert Fickler, Radek Lapkiewicz, Sven Ramelow, Anton Zeilinger. PNAS. DOI: 10.1073/pnas.1402365111 (sobald online)

Forschungsgruppe Quantenoptik, Quantennanophysik und Quanteninformation an der Fakultät für Physik der Universität Wien und Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften: http://www.quantum.at/

Wissenschaftlicher Kontakt
Dipl.-Ing. Mario Krenn
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
Institut für Quantenoptik und Quanteninformation (ÖAW)
1090 Wien, Boltzmanngasse 3
T +43-1-4277-295 68
mario.krenn@univie.ac.at

Rückfragehinweis
Sekretariat Prof. Zeilinger
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
Institut für Quantenoptik und Quanteninformation (ÖAW)
1090 Wien, Boltzmanngasse 3
T +43-1-4277-511 66
georgina.whittle@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum.

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie