Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Hinweis auf Higgs-Teilchen

14.12.2011
Begeisterung bei Mainzer Teilchenphysikern: 50 Jahre nach seiner Vorhersage nimmt das Higgs-Boson allmählich konkrete Gestalt an

Die Antwort auf eine der spannendsten Fragen der Teilchenphysik scheint zum Greifen nahe: Die Wissenschaftler am Genfer Forschungszentrum CERN haben erste Anzeichen für das Higgs-Boson ausfindig gemacht und rechnen nun damit, dass ihnen schon bald der zweifelsfreie Nachweis des mit großem Aufwand gesuchten Teilchens gelingen wird. Es ist das letzte Puzzle-Stückchen, das im Standardmodell der Physik noch fehlt, um den Aufbau der Materie zu erklären.

Sein endgültiger Nachweis käme einer Sensation gleich. „Möglicherweise haben wir tatsächlich den ersten Hinweis auf das Higgs-Teilchen beobachtet, aber noch ist es zu früh für eine definitive Aussage“, sagt Univ.-Prof. Dr. Volker Büscher vom Institut für Physik der Johannes Gutenberg-Universität Mainz (JGU). „Und wenn sich diese Hinweise als richtig herausstellen, liefern die jetzt analysierten Daten erstmals direkte Informationen über seine Masse“, ergänzt Univ.-Prof. Dr. Stefan Tapprogge. An der Mainzer Universität sind rund 50 Physiker an den Forschungen am CERN beteiligt und zwar insbesondere am ATLAS-Experiment, einem der zwei großen Experimente, die sich die Suche nach dem Higgs-Teilchen zur vordringlichen Aufgabe gemacht haben.

Das CERN hatte am Dienstag die neuesten Ergebnisse zum Higgs-Boson präsentiert. Das Teilchen war vor fast 50 Jahren vorhergesagt worden und ist nach dem britischen Physiker Peter Higgs benannt. Seitdem suchen die Wissenschaftler weltweit danach. Seine Entdeckung würde erklären, woher alle anderen elementaren Teilchen ihre Masse haben. Schon zwei Jahre nach dem Start haben die Proton-Proton-Kollisionen des LHC jetzt Ergebnisse geliefert, die die Forscher hoffen lassen. „Zum jetzigen Zeitpunkt können wir zwei Aussagen machen“, präzisiert Büscher. „Zum einen: Wenn das Higgs-Boson tatsächlich die vermuteten Eigenschaften hat, dann muss seine Masse zwischen 115 und 131 Giga-Elektronenvolt liegen – eine deutlich bessere Eingrenzung als noch vor einem Jahr. Zum anderen haben wir einen bemerkenswerten, interessanten Überschuss an Ereignissen gefunden, der ein erster direkter Hinweis auf ein Higgs-Boson der Masse im Bereich um 125 GeV sein könnte.“ Die Experimente am CERN werden im nächsten Jahr weitergeführt. Wenn sich die Hinweise bestätigen, wäre das Higgs-Boson ungefähr 125 Mal so schwer wie ein Proton.

Neben diesen neuen Daten vom ATLAS-Detektor, an denen die Mainzer Physiker maßgeblich beteiligt sind, sieht auch der zweite große Teilchendetektor am LHC, der Compact Muon Solenoid (CMS), ähnliche Anzeichen. Für die Wissenschaftler um Volker Büscher und Stefan Tapprogge würde sich mit einer Bestätigung ein Traum erfüllen. Viele haben ihre wissenschaftliche Laufbahn der Jagd nach dem Higgs-Teilchen gewidmet – und sind jetzt dabei, wenn es richtig spannend wird. „Das ist ein großer Moment für uns alle und es wäre wunderbar, wenn sich die Beobachtungen bestätigen ließen“, so Tapprogge. Noch spricht kein Wissenschaftler von einer Entdeckung, denn dafür ist es noch zu früh: Die Zahl der beobachteten Ereignisse ist noch nicht groß genug, als dass ein Zufallseffekt statistisch zweifelsfrei auszuschließen wäre. Aber allein die Tatsache, dass zwei unabhängige Experimente, ATLAS und CMS, in die gleiche Richtung weisen, sorgt für Aufregung und gibt Hoffnung, dass es sich hier tatsächlich um das mysteriöse Higgs-Teilchen handeln könnte.

Das Higgs-Boson wurde 1964 vorhergesagt und hätte die Funktion, den anderen elementaren Teilchen des Standardmodells ihre Masse zu verleihen. Nach den Vorstellungen der Physiker ist der gesamte Weltraum von dem sogenannten Higgs-Feld durchdrungen. Je nachdem wie stark die einzelnen Elementarteilchen an die Higgs-Bosonen koppeln, hätten sie mehr oder weniger Masse. Wird das fehlende Teilchen tatsächlich entdeckt, ist dies nicht nur die Bestätigung für ein Modell, sondern markiert zugleich den Aufbruch in eine neue Forschungswelt. Der LHC bietet – zumal bei einer noch höheren Energie der Protonenstrahlen ab 2014 – die idealen Voraussetzungen, um das Higgs-Feld und damit den Ursprung der Masse genau zu untersuchen.

Die Forscher der Arbeitsgruppe Experimentelle Teilchen- und Astroteilchenphysik (ETAP) der Uni Mainz sind besonders am ATLAS-Experiment beteiligt, einem der beiden großen Experimente am LHC. Der ATLAS-Detektor ist 46 Meter lang, 25 Meter hoch und 25 Meter breit. Er ist in der Lage, die neuen Teilchen, die bei den Protonenkollisionen entstehen, festzustellen und präzise zu vermessen. Am ATLAS-Experiment nehmen insgesamt etwa 3000 Forscher aus der ganzen Welt teil.

Die Arbeiten der Arbeitsgruppe ETAP sind in das Mainzer Exzellenzcluster „Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA) integriert, das den wichtigen Schritt in die abschließende Auswahlrunde der Bundesexzellenzinitiative geschafft hat.

Weitere Informationen:
Univ.-Prof. Dr. rer. nat. Volker Büscher
Experimentelle Teilchen- und Astroteilchenphysik (ETAP)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-20399
Fax +49 6131 39-25169
E-Mail: buescher@uni-mainz.de
http://www.etap.physik.uni-mainz.de/

Petra Giegerich | idw
Weitere Informationen:
http://www.cern.ch/
http://www.atlas.ch/
http://www.fsp101-atlas.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gefäßregeneration: Wie sich Wunden schließen

12.12.2017 | Medizin Gesundheit

Mit Drohnen Wildschweinschäden schätzen

12.12.2017 | Ökologie Umwelt- Naturschutz

Tumoren ordentlich einheizen

12.12.2017 | Biowissenschaften Chemie