Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die ersten Sterne des Universums waren nicht allein

04.02.2011
Astrophysiker gewinnen mit Hilfe von Computersimulationen neue Erkenntnisse zur Sternentstehung

Die ersten Sterne des Universums waren nicht wie bisher angenommen Einzelsterne, sondern konnten mit einer Vielzahl kleinerer Begleitsterne geboren werden. Dies geschieht dann, wenn sich die Gasscheiben, die junge Sterne umgeben, während des Geburtsvorgangs teilen; aus diesen Fragmenten können sich neue Sterne bilden.


Blick auf die Gasscheibe, die einen neu gebildeten, zentralen Stern umgibt. Blau erscheinen hier Bereiche geringer Gasdichte, rötlich solche mit hoher Gasdichte. Deutlich erkennt man die Verdichtung innerhalb der Scheibe, aus der sich ein weiterer Stern entwickeln wird. Die eingezeichnete Größenskala entspricht einem Abstand von 30 Astronomischen Einheiten (AU), dem 30-fachen Abstand zwischen Erde und Sonne. Abbildung: Arbeitsgruppe Sternentstehung


Zeitliche Entwicklung der Akkretionsscheibe um den ersten Stern herum. Deutlich zu erkennen ist das Enstehen dichter Spiralarme, die schließlich fragmentieren und weitere Sterne bilden. Bereits 110 Jahre nach der Bildung des ersten Protosterne sind drei Nachbarssterne entstanden. Abbildung: Arbeitsgruppe Sternentstehung

Das haben Forscher am Zentrum für Astronomie der Universität Heidelberg zusammen mit Kollegen des Max-Planck-Instituts für Astrophysik in Garching und der University of Texas at Austin (USA) mit Computersimulationen nachgewiesen. Die Forschungsergebnisse, die in „Science“ veröffentlicht werden, werfen ein völlig neues Licht auf die Bildung der ersten Sterne nach dem Urknall.

Sterne entstehen aus kosmischen Gaswolken in einem komplexen Wechselspiel aus Gravitation und Gasdruck. Aufgrund der eigenen Schwereanziehung beginnt sich das Gas immer weiter zu verdichten. Dabei erwärmt es sich, der Druck steigt, und die Verdichtung kommt zum Erliegen. Wenn es dem Gas gelingt, thermische Energie abzustrahlen, kann sich die Komprimierung fortsetzen und ein neuer Stern entstehen. Dieser Kühlprozess funktioniert dann besonders gut, wenn dem Gas chemische Elemente wie Kohlenstoff oder Sauerstoff beigemischt sind. So bilden sich in der Regel Sterne mit nur geringer Masse, so wie etwa unsere Sonne. Im frühen Universum waren diese Elemente jedoch noch nicht vorhanden, so dass das ursprüngliche kosmische Gas nicht sehr gut kühlen konnte. Die meisten theoretischen Modelle sagen daher Sternenmassen von etwa dem Hundertfachen der Sonne voraus.

Der Heidelberger Astrophysiker Dr. Paul Clark und seine Kollegen haben diese Vorgänge mit Hilfe von Computersimulationen untersucht. Sie zeigen, dass dieses einfache Bild revidiert werden muss und es im frühen Universum nicht nur riesige Einzelsterne gab. Der Grund liegt in der Physik der sogenannten Akkretionsscheiben, die die Geburt der ersten Sterne begleitet haben. Der Gasnebel, aus dem sich ein neuer Stern bildet, rotiert. Dadurch fällt das Gas nicht direkt ins Zentrum; es bildet erst eine scheibenartige Struktur aus und kann nur durch interne Reibung weiter nach innen fließen. Wenn mehr Masse auf diese Scheibe einfällt als sie nach innen abtransportieren kann, wird sie instabil und zerfällt in mehrere Fragmente. Anstelle eines einzigen Sternes im Zentrum bildet sich dann eine Gruppe von mehreren Sternen – mit Abständen, die der Distanz zwischen Erde und Sonne vergleichbar sind.

Diese Erkenntnis eröffnet nach Angaben von Dr. Clark völlig neue Möglichkeiten, die ersten Sterne im Universum zu entdecken. Doppelsterne oder Mehrfachsysteme können in ihrem Endstadium intensive Ausbrüche von Röntgen- oder Gammastrahlen produzieren. So werden bereits Weltraummissionen geplant, die derartige Blitze im frühen Universum untersuchen sollen. Zugleich besteht die Möglichkeit, dass einige der ersten Sterne durch gravitative Wechselwirkung mit Nachbarsternen aus ihrer Geburtsumgebung herausgeschleudert wurden, bevor sie viel Masse ansammeln konnten. Im Gegensatz zu kurzlebigen massereichen Sternen überdauern massearme Sterne Jahrmilliarden. „Einige der ersten Sterne könnten daher heute noch leben, was es ermöglichen würde, die frühesten Stadien der Stern- und Galaxienbildung direkt vor unserer eigenen kosmischen Haustür zu erforschen“, erklärt Dr. Clark.

Zusammen mit Dr. Simon Glover und Dr. Rowan Smith forscht Dr. Paul Clark in der Arbeitsgruppe Sternentstehung von Prof. Dr. Ralf Klessen, die am Zentrum für Astronomie der Universität Heidelberg angesiedelt ist. An den Arbeiten waren außerdem Dr. Thomas Greif vom Max-Plack-Institut für Astrophysik und Prof. Dr. Volker Bromm von der University of Texas beteiligt. Die Forschungen wurden von der Baden-Württemberg Stiftung im Programm Internationale Spitzenforschung II gefördert. Weitere Unterstützung kam vom Innovationsfonds FRONTIER der Universität Heidelberg, von der Deutschen Forschungsgemeinschaft, der Amerikanischen National Science Foundation und der NASA.

Informationen im Internet können unter http://www.ita.uni-heidelberg.de/research/klessen/science/starformation.shtml abgerufen werden.

Originalveröffentlichung:
P.C. Clark, S.C.O. Glover, R.J. Smith, T.H. Greif, R.S. Klessen, V. Bromm: The Formation and Fragmentation of Disks around Primordial Protostars. Science Express, 3 February 2011, doi: 10.1126/science.1198027
Kontakt:
Prof. Dr. Ralf Klessen
Zentrum für Astronomie
Institut für Theoretische Astrophysik
Telefon (06221) 54-8978
rklessen@ita.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de
http://www.ita.uni-heidelberg.de/research/klessen/science/starformation.shtml

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise