Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Gravitationswellen bilden sich nach 10 Millionen Jahren

05.09.2016

Kollidieren zwei Galaxien, löst die Verschmelzung der zentralen schwarzen Löcher Gravitationswellen aus, die sich wellenartig über das ganze Weltall verbreiten. Ein internationales Forschungsteam mit Beteiligung der Universität Zürich hat errechnet, dass dies etwa 10 Millionen Jahre nach der Verschmelzung der Galaxien passiert – viel schneller als bisher angenommen.

In seiner Allgemeinen Relativitätstheorie hatte Albert Einstein vor hundert Jahren die Gravitationswellen vorhergesagt, dieses Jahr wurden sie erstmals direkt nachgewiesen: Das amerikanische Gravitationswellen-Observatorium LIGO zeichnete von der Erde aus solche Krümmungen im Weltall auf, die durch das Verschmelzen von zwei massereichen schwarzen Löchern entstanden waren.


Die Bilder zeigen das Verschmelzen von zwei Galaxien in einer Simulation über etwa 15 Millionen Jahre. Die roten und blauen Punkte bezeichnen die beiden schwarzen Löcher.

Astrophysical Journal

Und die Erforschung der Gravitationswellen – und damit auch des Ursprungs des Universums – geht weiter: Ab 2034 sollen unter Leitung der Europäischen Weltraumorganisation ESA drei Satelliten ins All geschossen werden, um vom Weltall aus mit der Evolved Laser Interferometer Space Antenna (eLISA) Gravitationswellen in noch tieferen Frequenzbereichen messen zu können.

Bislang konnte jedoch nicht schlüssig vorausgesagt werden, zu welchem Zeitpunkt beim Verschmelzen von Galaxien Graviationswellen ausgelöst werden und sich über den gesamten Weltraum verbreiten. Zum ersten Mal hat dies nun ein internationales Team von Astrophysikern der Universität Zürich, vom Institute of Space Technology Islamabad, der Universität Heidelberg und der Chinesischen Akademie der Wissenschaften anhand einer umfangreichen Simulation berechnet.

Viel schneller als bisher angenommen

Jede Galaxie besitzt in ihrem Zentrum ein supermassives schwarzes Loch, das eine Masse von Millionen oder gar Milliarden Sonnen aufweisen kann. In einer realistischen Nachbildung des Universums wurde das Verschmelzen zweier, etwa 3 Milliarden Jahre junger Galaxien simuliert, die relativ eng beieinander lagen. Mithilfe von Supercomputern berechneten die Forschenden die Zeit, die die zwei zentralen schwarzen Löcher mit etwa 100 Millionen Sonnenmassen brauchen, um nach der Kollision der Galaxien starke Gravitationswellen auszusenden.

«Das Ergebnis ist überraschend: Das Verschmelzen der beiden schwarzen Löcher löste bereits nach etwa 10 Millionen Jahren die ersten Gravitationswellen aus – etwa 100 mal schneller als bisher angenommen», erklärt Lucio Mayer, vom Institut für Computerwissenschaft der Universität Zürich.

Supercomputer rechnete ein Jahr lang

Die über ein Jahr andauernden Computersimulationen wurden in China, Zürich und Heidelberg durchgeführt. Das Projekt erforderte einen innovativen Berechnungsansatz mit verschiedenen numerischen Codes auf unterschiedlichen Supercomputern. Jedem Supercomputer oblag dabei die Berechnung einer bestimmten Phase der orbitalen Annäherung der beiden massereichen schwarzen Löcher und ihrer Muttergalaxien.

Gegenüber bisherigen Modellen wurde in der vorliegenden Simulation die Beziehung zwischen den Umlaufbahnen der zentralen schwarzen Löcher und der Art der Muttergalaxien berücksichtigt. «Unsere Berechnungen erlauben daher eine robuste Prognose für die Verschmelzungsrate von supermassiven schwarzen Löchern in der Frühzeit des Universums. Sie können dazu beitragen, die Gravitationswellen, die eLISA in naher Zukunft wohl finden wird, besser einschätzen zu können», erklärt Lucio Mayer, vom Institut für Computerwissenschaft der Universität Zürich.

Literatur:
Fazeel Mahmood Khan, Davide Fiacconi, Lucio Mayer, Peter Berczik und Andreas Just. Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophysical Journal, 2. September 2016. arXiv:1604.00015

LISA-Sympisium vom 5. bis 9. September an der Universität Zürich

Die Universität Zürich organisiert zusammen mit der ETH vom 5. bis 9. September das 11. Internationale LISA-Symposium. Auf dem Campus Irchel treffen sich die „Who is Who“ der Gravitationswellen-Astrophysik, ranghohe Experten der europäischen und amerikanischen Raumfahrtbehörden sowie Spezialisten der Raumfahrtmission LISA. Sie berichten über die vorliegenden ausführlichen Tests der Technologie der LISA Pathfinder-Mission, die bisher alle Erwartungen bei weitem übertroffen haben. Und sie geben einen Ausblick auf das künftige Gravitationswellen-Observatorium eLISA, das voraussichtlich 2034 starten soll. Drei Satelliten, deren Abstand jeweils 1 Million Kilometer beträgt, werden dann auf eine Sonnenumlaufbahn gebracht, um Gravitationswellen in einem sehr tiefen Frequenzbereich mithilfe von Laserstrahlen aufzuspüren. http://www.physik.uzh.ch/events/lisa2016/

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2016/Gravitationswellen-berechnen....

Melanie Nyfeler | Universität Zürich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften