Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Gravitationswellen bilden sich nach 10 Millionen Jahren

05.09.2016

Kollidieren zwei Galaxien, löst die Verschmelzung der zentralen schwarzen Löcher Gravitationswellen aus, die sich wellenartig über das ganze Weltall verbreiten. Ein internationales Forschungsteam mit Beteiligung der Universität Zürich hat errechnet, dass dies etwa 10 Millionen Jahre nach der Verschmelzung der Galaxien passiert – viel schneller als bisher angenommen.

In seiner Allgemeinen Relativitätstheorie hatte Albert Einstein vor hundert Jahren die Gravitationswellen vorhergesagt, dieses Jahr wurden sie erstmals direkt nachgewiesen: Das amerikanische Gravitationswellen-Observatorium LIGO zeichnete von der Erde aus solche Krümmungen im Weltall auf, die durch das Verschmelzen von zwei massereichen schwarzen Löchern entstanden waren.


Die Bilder zeigen das Verschmelzen von zwei Galaxien in einer Simulation über etwa 15 Millionen Jahre. Die roten und blauen Punkte bezeichnen die beiden schwarzen Löcher.

Astrophysical Journal

Und die Erforschung der Gravitationswellen – und damit auch des Ursprungs des Universums – geht weiter: Ab 2034 sollen unter Leitung der Europäischen Weltraumorganisation ESA drei Satelliten ins All geschossen werden, um vom Weltall aus mit der Evolved Laser Interferometer Space Antenna (eLISA) Gravitationswellen in noch tieferen Frequenzbereichen messen zu können.

Bislang konnte jedoch nicht schlüssig vorausgesagt werden, zu welchem Zeitpunkt beim Verschmelzen von Galaxien Graviationswellen ausgelöst werden und sich über den gesamten Weltraum verbreiten. Zum ersten Mal hat dies nun ein internationales Team von Astrophysikern der Universität Zürich, vom Institute of Space Technology Islamabad, der Universität Heidelberg und der Chinesischen Akademie der Wissenschaften anhand einer umfangreichen Simulation berechnet.

Viel schneller als bisher angenommen

Jede Galaxie besitzt in ihrem Zentrum ein supermassives schwarzes Loch, das eine Masse von Millionen oder gar Milliarden Sonnen aufweisen kann. In einer realistischen Nachbildung des Universums wurde das Verschmelzen zweier, etwa 3 Milliarden Jahre junger Galaxien simuliert, die relativ eng beieinander lagen. Mithilfe von Supercomputern berechneten die Forschenden die Zeit, die die zwei zentralen schwarzen Löcher mit etwa 100 Millionen Sonnenmassen brauchen, um nach der Kollision der Galaxien starke Gravitationswellen auszusenden.

«Das Ergebnis ist überraschend: Das Verschmelzen der beiden schwarzen Löcher löste bereits nach etwa 10 Millionen Jahren die ersten Gravitationswellen aus – etwa 100 mal schneller als bisher angenommen», erklärt Lucio Mayer, vom Institut für Computerwissenschaft der Universität Zürich.

Supercomputer rechnete ein Jahr lang

Die über ein Jahr andauernden Computersimulationen wurden in China, Zürich und Heidelberg durchgeführt. Das Projekt erforderte einen innovativen Berechnungsansatz mit verschiedenen numerischen Codes auf unterschiedlichen Supercomputern. Jedem Supercomputer oblag dabei die Berechnung einer bestimmten Phase der orbitalen Annäherung der beiden massereichen schwarzen Löcher und ihrer Muttergalaxien.

Gegenüber bisherigen Modellen wurde in der vorliegenden Simulation die Beziehung zwischen den Umlaufbahnen der zentralen schwarzen Löcher und der Art der Muttergalaxien berücksichtigt. «Unsere Berechnungen erlauben daher eine robuste Prognose für die Verschmelzungsrate von supermassiven schwarzen Löchern in der Frühzeit des Universums. Sie können dazu beitragen, die Gravitationswellen, die eLISA in naher Zukunft wohl finden wird, besser einschätzen zu können», erklärt Lucio Mayer, vom Institut für Computerwissenschaft der Universität Zürich.

Literatur:
Fazeel Mahmood Khan, Davide Fiacconi, Lucio Mayer, Peter Berczik und Andreas Just. Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophysical Journal, 2. September 2016. arXiv:1604.00015

LISA-Sympisium vom 5. bis 9. September an der Universität Zürich

Die Universität Zürich organisiert zusammen mit der ETH vom 5. bis 9. September das 11. Internationale LISA-Symposium. Auf dem Campus Irchel treffen sich die „Who is Who“ der Gravitationswellen-Astrophysik, ranghohe Experten der europäischen und amerikanischen Raumfahrtbehörden sowie Spezialisten der Raumfahrtmission LISA. Sie berichten über die vorliegenden ausführlichen Tests der Technologie der LISA Pathfinder-Mission, die bisher alle Erwartungen bei weitem übertroffen haben. Und sie geben einen Ausblick auf das künftige Gravitationswellen-Observatorium eLISA, das voraussichtlich 2034 starten soll. Drei Satelliten, deren Abstand jeweils 1 Million Kilometer beträgt, werden dann auf eine Sonnenumlaufbahn gebracht, um Gravitationswellen in einem sehr tiefen Frequenzbereich mithilfe von Laserstrahlen aufzuspüren. http://www.physik.uzh.ch/events/lisa2016/

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2016/Gravitationswellen-berechnen....

Melanie Nyfeler | Universität Zürich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau