Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weitere Erfolge mit Quantendiamanten

19.04.2011
Veröffentlichung in Nature Physics und DFG-Forschergruppe

Forschern des 3. Physikalischen Instituts sowie des Stuttgart Research Centers für Photonische Technologien (SCoPe) der Universität Stuttgart ist es gelungen, mit einer einzelnen atomaren Fehlstelle in Diamant elektrische Felder zu messen.

Damit können künftig die Struktur einer Substanz und deren chemische Reaktivität gleichzeitig bestimmt werden. Über diese Messungen berichtet nun die renommierte Zeitschrift Nature Physics*). Die Erfolge der Stuttgarter Wissenschaftler auf dem Feld der Quantendiamanten honorierte auch die Deutsche Forschungsgemeinschaft DFG, die in ihrer Sitzung im April die Einrichtung der DFG-Forschungsgruppe „Diamond Materials and Quantum Application“ an der Uni Stuttgart bewilligt hat.

Die Quantenphysik wandelt sich dank eines immer umfassenderen Verständnisses und gut beherrschbarer Experimente zunehmend zum Forschungsfeld Quantentechnologie. Physikerinnen und Physiker können mittlerweile Materie maßschneidern und die Quantendynamik beeinflussen, was vielfältige Anwendungsmöglichkeiten beispielsweise in der Informationsverarbeitung oder der Sensorik eröffnet. Die Forschergruppe „Diamond Materials and Quantum Application“ (Sprecher: Prof. Jörg Wachtrup, 3. Physikalisches Institut der Universität Stuttgart) widmet sich mit Diamant einem sehr vielversprechenden Quantenmaterial und nutzt die technologischen Grundlagen dazu, besser kontrollierte und immer komplexere Diamant-Strukturen herzustellen. Hierzu bringt die Forschergruppe Experten zu Materialwachstum, Strukturierung und Defekterzeugung, aber auch Quantenoptik und Spintronik zusammen. Sie fokussiert vor allem auf die Anwendung von „Quanten-Diamanten“ in den Bereichen Quantenphotonik und Spintronik. Die Ergebnisse der Forschergruppe könnten in der Zukunft aber auch unter anderem in der Medizin Anwendung finden.

Hochgenaue Messung elektrischer Felder
In den jetzt in Nature Physics publizierten Forschungsarbeiten widmen sich die Stuttgarter Forscher der großen physikalischen Herausforderung, elektrische Felder zu vermessen. Solche Felder spielen an verschiedenen Stellen in der Natur und Technik eine entscheidende Rolle. Nervenimpulse werden zum Beispiel durch die Veränderung von elektrischen Feldern übertragen und auch die moderne Datenspeicherung wie zum Beispiel auf USB-Sticks beruht auf der Speicherung elektrischer Ladung. Die hochgenaue Messung der mit den Ladungen verbundenen kleinen elektrischen Felder ist allerdings eines der anspruchsvollsten Gebiete der Messtechnik. Die Stuttgarter Forscher haben dafür einen neuartigen Sensor entwickelt, der aus lediglich einem einzelnen Atom besteht. Dieses Stickstoffatom ist als Verunreinigung in Diamant enthalten. Das Diamantgitter fixiert das Atom und erlaubt es gleichzeitig, mit Hilfe eines Lasers die atomare Fehlstelle zu adressieren. Die Wechselwirkung des Atoms mit dem zu messenden Feld kann mittels des von der Verunreinigung wieder ausgesendeten Lichts bestimmt werden. Auf diese Weise ist man in der Lage, elektrische Felder zu messen, die einem Bruchteil einer Elementarladung in einer Entfernung von 0,1 Mikrometern entsprechen. Da der Sensor selbst ungefähr die Abmessung von einem Atom besitzt, können elektrische Felder ebenfalls mit dieser räumlichen Präzision gemessen werden. Das optische Auslesen des Sensors erlaubt es, den Sensor in jeder beliebigen Geometrie anzubringen. Zudem erreicht das Verfahren bei Raumtemperatur und unter Umgebungsbedingungen seine Empfindlichkeit und Auflösung.

Mit demselben Verfahren konnten Wissenschaftler in der Vergangenheit bereits den Nachweis kleiner magnetischer Felder demonstrieren. Jetzt wurde es erstmals möglich, am selben Ort das elektrische sowie magnetische Feld zu bestimmen, ohne den Sensor wechseln zu müssen. Diese einzigartige Kombination eröffnet vollkommen neue Möglichkeiten, zum Beispiel das gleichzeitige Messen der Verteilung von magnetischen Momenten der Kerne chemischer Verbindungen sowie die Ladungsverteilung von Elektronen in einzelnen Molekülen.

*) Florian Dolde, Helmut Fedder, Marcus W. Doherty, Tobias Nöbauer, Florian Rempp, Gopalakrishnan. Balasubramanian, ThomasWolf, Friedemann Reinhard, Lloyd C.L. Hollenberg, Fedor Jelezko and Jörg Wrachtrup: Sensing electric fields using single diamond spins – Nature physics 10.1038/NPHYS1969

http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1969.html

Weitere Informationen bei Prof. Jörg Wrachtrup, Universität Stuttgart, 3. Physikalisches Institut Tel. 0711/685-65278, e-mail wrachtrup@physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de/
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1969.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie