Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weitere Erfolge mit Quantendiamanten

19.04.2011
Veröffentlichung in Nature Physics und DFG-Forschergruppe

Forschern des 3. Physikalischen Instituts sowie des Stuttgart Research Centers für Photonische Technologien (SCoPe) der Universität Stuttgart ist es gelungen, mit einer einzelnen atomaren Fehlstelle in Diamant elektrische Felder zu messen.

Damit können künftig die Struktur einer Substanz und deren chemische Reaktivität gleichzeitig bestimmt werden. Über diese Messungen berichtet nun die renommierte Zeitschrift Nature Physics*). Die Erfolge der Stuttgarter Wissenschaftler auf dem Feld der Quantendiamanten honorierte auch die Deutsche Forschungsgemeinschaft DFG, die in ihrer Sitzung im April die Einrichtung der DFG-Forschungsgruppe „Diamond Materials and Quantum Application“ an der Uni Stuttgart bewilligt hat.

Die Quantenphysik wandelt sich dank eines immer umfassenderen Verständnisses und gut beherrschbarer Experimente zunehmend zum Forschungsfeld Quantentechnologie. Physikerinnen und Physiker können mittlerweile Materie maßschneidern und die Quantendynamik beeinflussen, was vielfältige Anwendungsmöglichkeiten beispielsweise in der Informationsverarbeitung oder der Sensorik eröffnet. Die Forschergruppe „Diamond Materials and Quantum Application“ (Sprecher: Prof. Jörg Wachtrup, 3. Physikalisches Institut der Universität Stuttgart) widmet sich mit Diamant einem sehr vielversprechenden Quantenmaterial und nutzt die technologischen Grundlagen dazu, besser kontrollierte und immer komplexere Diamant-Strukturen herzustellen. Hierzu bringt die Forschergruppe Experten zu Materialwachstum, Strukturierung und Defekterzeugung, aber auch Quantenoptik und Spintronik zusammen. Sie fokussiert vor allem auf die Anwendung von „Quanten-Diamanten“ in den Bereichen Quantenphotonik und Spintronik. Die Ergebnisse der Forschergruppe könnten in der Zukunft aber auch unter anderem in der Medizin Anwendung finden.

Hochgenaue Messung elektrischer Felder
In den jetzt in Nature Physics publizierten Forschungsarbeiten widmen sich die Stuttgarter Forscher der großen physikalischen Herausforderung, elektrische Felder zu vermessen. Solche Felder spielen an verschiedenen Stellen in der Natur und Technik eine entscheidende Rolle. Nervenimpulse werden zum Beispiel durch die Veränderung von elektrischen Feldern übertragen und auch die moderne Datenspeicherung wie zum Beispiel auf USB-Sticks beruht auf der Speicherung elektrischer Ladung. Die hochgenaue Messung der mit den Ladungen verbundenen kleinen elektrischen Felder ist allerdings eines der anspruchsvollsten Gebiete der Messtechnik. Die Stuttgarter Forscher haben dafür einen neuartigen Sensor entwickelt, der aus lediglich einem einzelnen Atom besteht. Dieses Stickstoffatom ist als Verunreinigung in Diamant enthalten. Das Diamantgitter fixiert das Atom und erlaubt es gleichzeitig, mit Hilfe eines Lasers die atomare Fehlstelle zu adressieren. Die Wechselwirkung des Atoms mit dem zu messenden Feld kann mittels des von der Verunreinigung wieder ausgesendeten Lichts bestimmt werden. Auf diese Weise ist man in der Lage, elektrische Felder zu messen, die einem Bruchteil einer Elementarladung in einer Entfernung von 0,1 Mikrometern entsprechen. Da der Sensor selbst ungefähr die Abmessung von einem Atom besitzt, können elektrische Felder ebenfalls mit dieser räumlichen Präzision gemessen werden. Das optische Auslesen des Sensors erlaubt es, den Sensor in jeder beliebigen Geometrie anzubringen. Zudem erreicht das Verfahren bei Raumtemperatur und unter Umgebungsbedingungen seine Empfindlichkeit und Auflösung.

Mit demselben Verfahren konnten Wissenschaftler in der Vergangenheit bereits den Nachweis kleiner magnetischer Felder demonstrieren. Jetzt wurde es erstmals möglich, am selben Ort das elektrische sowie magnetische Feld zu bestimmen, ohne den Sensor wechseln zu müssen. Diese einzigartige Kombination eröffnet vollkommen neue Möglichkeiten, zum Beispiel das gleichzeitige Messen der Verteilung von magnetischen Momenten der Kerne chemischer Verbindungen sowie die Ladungsverteilung von Elektronen in einzelnen Molekülen.

*) Florian Dolde, Helmut Fedder, Marcus W. Doherty, Tobias Nöbauer, Florian Rempp, Gopalakrishnan. Balasubramanian, ThomasWolf, Friedemann Reinhard, Lloyd C.L. Hollenberg, Fedor Jelezko and Jörg Wrachtrup: Sensing electric fields using single diamond spins – Nature physics 10.1038/NPHYS1969

http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1969.html

Weitere Informationen bei Prof. Jörg Wrachtrup, Universität Stuttgart, 3. Physikalisches Institut Tel. 0711/685-65278, e-mail wrachtrup@physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de/
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1969.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie